PROCESS FILTRATION PRODUCT GUIDE

R

and Color VILLO

0

mdi Dravasorietxx

Lot No. OK

LWS X5501EEXX10

endi

mdi LKSX6401EE-XX101

Company Profile

36 Acre Campus

World Class GMP Compliant Multilocation Facilities (200,000 sq. ft.)

Advanced Microdevices (**mdi**) is a leader in innovative membrane technologies. Starting from a single person R&D operation in 1976, **mdi** has developed into a dedicated team of 1000 plus with more than 800,000 products.

The company's core competence is its ability to develop new membrane technologies and innovate existing ones to deliver advantages to the customer for high end purification and separation applications in a wide range of industries such as pharmaceuticals, biopharmaceuticals, biotechnology, food and beverage, hospitals, and immunodiagnostics.

As membranes end up being incorporated into user friendly devices, plastic design and moulding and sealing technologies become an integral part of the chain to deliver value to the customer. Realizing this, **mdi** has grown into a vertically integrated company that helps deliver prototypes rapidly for quicker conversion to products for the market.

mdi products are used for critical applications in pharmaceutical and biopharmaceutical industries, such as sterilization of injectable drugs, sterility testing, sample preparation of drugs that are tested with highly sophisticated instrumentation, and development of new drug entities and formulations. **mdi** also offers world class membranes for making reliable immunoassays for testing of diseases at patient bedside.

mdi products meet or exceed industry standards and many of these are recognized as the best available in the world.

These products are manufactured by highly trained manpower in modern GMP facilities with large ISO class 7 production areas under ISO 9001 certified quality management system and are backed by state of the art QC testing, microbiology, reliability and validation laboratories.

A strong pipeline of new products is constantly being developed in its well equipped R&D labs.

Table of Contents

General	Page No.
MembraneTechnologies	2
 Quality Assurance 	3
 Validation Services 	4
 Customer Support 	5
 Filter Selection and Sizing 	6
 Filter Sizing: Linear Upscaling from R&D 	7
to Production Process	
Easy Connect	8
Filters for Sterilization of Liquids: PES Membrane Filters	9
> Filter Selection Chart	10
 Filter Selection Chart Aconti Can III IIIC 25 mm 50 mm 	10 11
> AseptiCap KL/KS- 25mm, 50mm	13
AseptiCap KL/KS Capsule Filters	15
 AseptiCap KS Large Capsule Filters AseptiCap KO Capsule Filters 	18
 AseptiCap KSO Capsule Filters 	19
 AseptiCap KSO Large Capsule Filters 	21
 AseptiSure HS Mini Cartridge Filters 	23
 AseptiSure HS Cartridge Filters 	24
 AseptiSure HSR Mini Cartridge Filters 	25
> AseptiSure HSR Cartridge Filters	26
> AseptiSure KS Mini Cartridge Filters	27
> AseptiSure KS Cartridge Filters	28
Filters for Sterilization of Liquids: Hydrophilic PVDF Membrane Filters	29
 Filter Selection Chart 	29
 AseptiCap WS Inline Capsule Filters 	29 30
 AseptiCap WS minite Capsule Filters AseptiCap WS Capsule Filters 	30
 AseptiCap WS Capsule Filters AseptiCap WS Large Capsule Filters 	34
 AseptiSure WS Mini Cartridge Filters 	36
 AseptiSure WS Cartridge Filters 	37
Filters for Sterilization of Liquids Nylon-66 Membrane Filters	38
 Filter Selection Chart 	39
> AseptiCap NL/NS Capsule Filters	40
 AseptiCap NS Large Capsule Filters 	42
> AseptiSure NS Mini Cartridge Filters	44
> AseptiSure NS Cartridge Filters	45
> Nylon-66 Membrane Disc Filters	46
Filters for Sterilization of Air/Gas	47
 Filter Selection Chart 	48

Single Use Gamma Sterilizable PVDF Membrane Filter Devices AseptiVent VF -γ 25mm, 37mm, 50mm 49 ۶ AseptiVent VF - Y Capsule Filters 51 \triangleright 53 AseptiVent VF - γ Large Capsule Filters Multiple Use Autoclavable / Steam Sterilizable **PTFE Membrane Filter Devices** \geq AseptiVent TF- 25mm, 37mm, 50mm 55 AseptiVent TF Capsule Filters 57 ≻ AseptiVent TF Large Capsule Filters 59 \geq AseptiSure TH Mini Cartridge Filters 61 \triangleright AseptiSure TH Cartridge Filters 62 \triangleright AseptiSure TF Mini Cartridge Filters 63 AseptiSure TF Cartridge Filters 64 \geq **Filters for Clarification** 65 and pre-filtration **Filter Selection Chart** 66 \geq ClariPro GK Capsule Filters 67 \geq ClariPro GK Large Capsule Filters 68 \geq ClariSure GK Mini Cartridge Filters 69 \geq ClariSure GK Cartridge Filters 70 \geq ClariCap GS Capsule Filters 71 \geq 72 \geq ClariCap GS Large Capsule Filters ClariSure GS Mini Cartridge Filters 73 \triangleright 74 ClariSure GS Cartridge Filters \geq ClariSure GP Mini Cartridge Filters 75 \geq \geq ClariSure GP Cartridge Filters 76 ClariCap PP Capsule Filters 77 \geq ClariCap PP Large Capsule Filters 78 \triangleright ClariSure PA Mini Cartridge Filters \geq 79 80 \geq ClariSure PA Cartridge Filters 81 **Microglassfiber Disc Filters** \triangleright **Filters for Polishing** 82 and Clarification **Filter Selection Chart** 83 ClariSure PP 84 ClariSure PL 85 ClariSure DP 86 **Chemical Compatibility** 87 **End Connection Availability Chart** 89 for Capsule Filters **Dimensions: Capsule Filters** 90

91

92

Adapters and Elastomers Availability

Chart for Cartridge Filters

Ordering Information

mdi Membrane Technologies

mdi offers customized solutions to enhance process efficiency, productivity, product quality, and consistency for wide range applications in biopharmaceuticals, pharmaceuticals, biotechnology, microelectronics, and immunodiagnostics.

Research and Development

A unique multidimensional research and development facility at **mdi**, involving teams specializing in critical areas of membrane technology, biotechnology, electronics, chemistry, and mechanical engineering, continuously strives with an integrated approach to develop advanced, innovative and customized products.

These filters have innovative design inputs to deliver unique performance advantages over competing products in terms of higher retention efficiencies, flow rates, throughputs, and lower filtration losses.

This unparalleled capability to develop custom products and solutions is a continuous source of pride and drives the **mdi** team to push the boundaries of technology and maximize value for the user.

mdi Quality Assurance

mdi Microfiltration products are well designed with built-in quality assurance.

The careful selection of raw materials, validated production processes and Quality Management System certified by ISO 9001:2015 ensures consistently high quality products. **mdi** products meet 21 CFR, ASTM, compendia requirements and meet global regulatory expectations.

Facilities

mdi filters are produced and packaged in facilities meeting GMP requirements such as Clean Rooms with Class 10,000 and Class 100 areas for critical processes.

Deep Characterization and Certification

Apart from retention efficiency and other functional parameters such as flowrates, temperature/hydraulic stress etc., **mdi** filters are deeply characterized for critical areas of concern such as biosafety, bioburden levels, endotoxin levels and extractables.

Quality Control

The filters go through stringent in process and final product testing and quality is ensured by in place QMS.

Traceability

Each sterilizing grade cartridge and capsule filter has unique identification number and is accompanied with individual certificate of quality.

mdi Validation Services

As per regulatory requirements, the pharmaceutical industry has to provide a high level of assurance that the sterile drug product, manufactured through aseptic processing, offers the identity, strength, quality, and purity it purports to have or is represented to posses (Ref. USFDA 21CFR 211.100(a).) Consequently it has become increasingly critical to establish/quantify the impact on the drug due to its interface with various process components under different process conditions.

Sterilizing grade filters are of critical importance in aseptic manufacturing, and it is the drug manufacturer's responsibility to show that the selected filter is able to sterilize the product under the process conditions and it does not affect the purity, quality and strength of the drug product.

Validation Services

mdi asertain Filter validation services are designed to meet customer specific needs and help achieve regulatory compliance. These include the following:

- > Studies establishing filter integrity test values specific to drug product
- > Filter fluid interaction studies
 - Physico-Chemical compatibility studies
 - Extractable/Leachable studies
 - Adsorption studies
- Microbial retention studies
- > Throughput Studies

All of these studies are executed as per pre-approved test methodologies to establish the test conditions and acceptance criteria.

mdi also offers post validation support for regulatory audits.

Validation Guides

mdi filters are validated as per global regulatory requirements. These filters, in compliance with the Regulation Title 21 Code of Federal Regulations (CFR) Part 314.420, have been registered at the U.S. Food and Drug Administration through Drug Master File No.DMF 15554.

Detailed documentation on validation of **mdi** filters for sterilization of fluids (air/gases and liquids) in form of Validation Guides is also available.

mdi Customer Support

mdi technology executives assist in problem solving and process upgradation through experience sharing and developing customized products and systems. Some of these customer support activities are:

Customized Filtration Solutions

mdi offers customized solutions for complex filtration problems. **mdi** technology executives will help you in finding solutions to filter difficult to filter fluids & minimizing filtration losses.

» Filtration System Design

Designing an efficient filtration system is an integral part of process optimization for minimizing filtration costs, increasing yields and reducing process time. **mdi** offers technical support for selection of filter materials by performing throughput studies to optimize filter train and filter sizing.

» Installation and Operational Qualification

mdi provides well documented installation, operational and performance qualification guidelines for all the equipment and systems it offers.

Regulatory Assistance

mdi provides complete regulatory assistance to it's customers. **mdi** products and validation services meet global regulatory expectations.

» Technical Seminars

Technical seminars at customer's location are organized to help the users understand the performance characterization of product in use, differentiate between various options available in the market and select the best solutions to suit their requirements. These interactions help create optimized systems and also upgrade current processes in terms of performance and cost effectiveness.

Filter Selection and Sizing

Highly regulated process industries such as pharmaceuticals and biopharmaceuticals work with a very wide variety of process streams/fluids under different process conditions. They continuously face with the challenge of achieving their process objectives efficiently and cost effectively.

Microfiltration is a key process step to achieve critical process objectives that range from sterilization of process fluids to bioburden reduction, polishing and clarification.

These process streams can range from easy to filter water for injection to difficult to filter colloidal solutions, emulsions, liposomal drug delivery systems or large molecule high value therapeutic proteins and vaccine concentrates. Such a wide spectrum of process streams, coupled with different process objectives, is quite a challenge for the process owner.

Selection of the right filters and their sizing to meet various process needs is thus critical to successfully achieve the desired objectives.

For establishing filter type, the following important questions need to be answered with respect to the process:

- 1. What is the objective of filtration?
 - Sterilization
 - Bioburden reduction
 - > Particle removal
 - Clarification
- 2. What is the fluid to be filtered?
 - Liquid or gases
 - What are the fluid properties such as pH, viscosity, temperature and surface tension
- 3. What will be the process conditions?
 - Will the filtration system be inline steam sterilized or autoclaved?
 - Will the system be sanitized with chemicals or hot water?
 - > What are the sterilization/sanitization conditions?
 - Are the filters going to be used once or multiple times?
 - How many times the system will be sterilized /sanitized?
 - > What is the maximum operating temperature?
 - What is the allowable maximum allowable differential pressure?

- 4. Is it going to be a continuous process or batch filtration?
- 5. What will be the batch volume for full scale process filtration?
- 6. What is the maximum allowable filtration time or the minimum desired flow rate?

Once the filter type with respect to MOC, pore size etc. has been established the next step is to establish the filter size.

Filter sizing, although to some extent is dependent on factors such as minimum desired flow rate, fluid viscosity as well as temperature, a critical parameter is the contamination profile of the fluid to be filtered. The nature and quantum of contaminants defines their interaction with the filter, which in turn defines the throughput one can achieve from a given filtration area for the fluid in question. An understanding of this behavior will help define not only the right sized filtration system but also the right combination of pre-filters and final filters to achieve desired/optimum throughput.

mdi offers filter sizing services to product development labs and process owners in full scale manufacturing. These involve small scale throughout studies to establish suitable and cost effective filtration system. Different lab scale filter and pre-filter combinations are used to maximize throughputs. The selected combination is, based on desired batch volumes or throughputs, linearly extrapolated to establish filter size.

For more information please contact our local technology executive or write to us at info@mdimembrane.com

Filter Sizing: Linear Upscaling from R&D to Production Process

Researchers in NDDS and formulation development are concerned about the impact of filter fluid interaction on stability, purity, strength etc. of the drug product. They take a keen interest in filter selection at the formulation development stage itself.

Although preliminary compatibility data support initial filter selection, for stability studies, detailed filter validations are required to provide enough documented evidence to justify specific filter use.

A critical requirement that needs to be addressed at this stage is of scalability from R&D to pilot scale to full scale production processes. Any change in filter MOC for full scale processes will require additional validation.

mdi offers a wide range of filters to provide linear scale up from lab scale to production process. While scaling up the process, the appropriate filter size can be selected by increasing the effective filtration area of filter proportionate to the process fluid volumes.

All materials of construction of core, sleeve, end caps, support layers and housing as well as manufacturing process is identical for all filter devices starting from 5 cm² to 18000 cm² hence process scaling can be facilitated without triggering additional validation studies for given process conditions. **mdi** provides complete documentation for each of the filters thereby reducing the additional validation cost and time.

25 mm, 5 cm²

50 mm, 20 cm²

1", 250 cm²

2", 500 cm²

5", 1000 cm²

8″, 2000 cm²

10", 6000 cm²

Easy Connect

Wide Range of End Connections

Pharmaceutical and Biopharmaceutical processes involve transfer of high value fluids through multiple process steps. Making high quality, reliable, flexible and functionally convenient connectivity with filters is of utmost value.

mdi Capsule filters offer a wide range of reliable end connections for functional convenience and customized connectivity.

Validated for Performance

These end connections are manufactured with tight dimension tolerance and are validated for strength and connection integrity under conditions of extreme use.

³⁄₄" Sanitary Flange

½″ **HB**

1⁄4″ SHB

3/8" Hose Barb

Male Luer Slip

11/2" Sanitary Flange

1/2" Single Stepped Hose Barb

Quick Connector

Female Luer Lock

1/4" MNPT

Customized Connectivity

mdi Capsule filters can also be customized to offer different inlet-outlet combinations to meet the unique connectivity needs in process assemblies. For example, stainless steel components with sanitary flange connections are sometimes required to be connected to single use disposable systems through quick-connectors or hose barb connections.

1¹/₂" Sanitary Flange to ¹/₂" Hose Barb

1½" Sanitary Flange to ¾" Sanitary Flange

High Security ½" Single Step Hose Barb Connection

Filters for Sterilization of Liquids: PES Membrane Filters

mdi produces a wide range of Gamma sterilizable and steam sterilizable PES membrane capsule and cartridge filters to meet filtration requirements of biopharmaceutical and pharmaceutical processing.

These filters meet key process requirements such as high retention efficiency, very high protein recoveries, extremely low extractables, high throughputs, wide chemical compatibility etc.

mdi PES filter devices are available as:

Filter Type	Single Layer	Multiple Layer			
Gamma Sterilizable Capsule	AseptiCap KL-γ	AseptiCap KS -γ			
Filters	ABEPTICUP NE Y	AseptiCap KSO -γ			
	AseptiCap KL	AseptiCap KS			
Autoclavable Capsule Filters	AseptiCap KO	AseptiCap KSO			
Steam Sterilizable Cartridge Filters	_	AseptiSure KS			
High Temperature Resistant		AseptiSure HS			
Steam Sterilizable Cartridge Filters	-	AseptiSure HSR			

Quality Assurance

These filter devices are manufactured in Class 10,000 clean rooms under ISO 9001 : 2015 certified quality management systems and are validated to meet compendia and regulatory requirements.

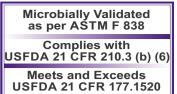
Applications

Sterile Filtration of:

- > Cell culture media
- > Cell culture media containing serum
- > Media additives
- Final product concentrates
- > Buffers
- Adjuvants
- Small Volume Parenterals
- Large Volume Parenterals
- Water for Injection

	Assurance
Toxicity	Passes Biological Reactivity Test, In Vivo, as per USP <88> for Class VI plastics
Cytotoxicity	Passes Biological Reactivity Test, In Vitro, USP <87> for Cytotoxicity
Bioburden	Bioburden level is < 1000 cfu/filter device as per ISO 11737-1: 2018
Bacterial Endotoxin	Aqueous extracts exhibit < 0.25 EU/ml as established by Limulus Amebocyte Lysate (LAL) Test as per USP <85>
Non Fiber Releasing	Passes test as per USP and comply with USFDA 21 CFR Part 211.72 for fiber release
Extractables with WFI	Passes test as per USP <661>
Oxidizable Substances	Passes test as per USP <1231>
Particle Shedding	Passes test as per USP <788> for particulate matter in injections
TOC/Conductivity at 25 °C	Meets the WFI requirements of USP <643> for Total Organic Carbon and USP <645> for Water Conductivity after a specified volume of purified water flush
Indirect Food Additive	All Polypropylene components meet the FDA Indirect Food Additive requirements cited in 21 CFR 177.1520
Good Manufacturing Practice	These products are manufactured in a facility which adheres to Good Manufacturing Practices

Filter Selection Chart

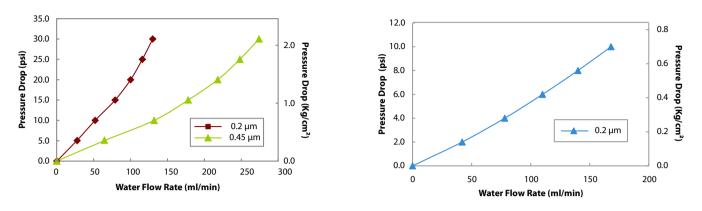

Application	Key Application	Gamma Sterilizable	Steam Sterilizable					
Area	Requirements	Capsule Filters	Capsule Filters	Cartrid	lge Filters			
Biopharmaceutical	S							
Media preparation	- Mycoplasma removal (in case of Mammalian Cell Culture)	AseptiCap KS -γ 0.1 μm PES Membrane Capsule Filter	AseptiCap KS 0.1 μm PES Membrane Capsule Filter	AseptiSure KS 0.1 µm PES Membrane Cartridge Filter	AseptiSure HS 0.1 µm High Temperature PES Membrane Cartridge Filter			
	- Microbial retention (in case of Microbial Fermentation)	AseptiCap KS - γ 0.2 μm PES Membrane Capsule Filter	AseptiCap KS 0.2 μm PES Membrane Capsule Filter	AseptiSure KS 0.2 µm PES Membrane Cartridge Filter	AseptiSure HS 0.2 µm High Temperature PES Membrane Cartridge Filter			
Sterile filtration of growth regulators	 Absolute retention Low protein binding 	AseptiCap KS - γ 0.2 μm PES Membrane Capsule Filter	AseptiCap KS 0.2 μm PES Membrane Capsule Filter	AseptiSure KS 0.2 µm PES Membrane Cartridge Filter	AseptiSure HS 0.2 µm High Temperature PES Membrane Cartridge Filter			
Sterile filtration of alkaline/acidic solutions for pH control	- Absolute retention - Compatible with 1-14 pH	AseptiCap KSO- γ 0.2 μm PES Membrane Capsule Filter	AseptiCap KO/KSO 0.2 μm PES Membrane Capsule Filter	-	AseptiSure HSR 0.2 μm High Temperature PES Membrane Cartridge Filter			
Cell Harvesting	- Bioburden reduction	AseptiCap KS - γ 0.2 μm or 0.45 μm PES Membrane Capsule Filter	AseptiCap KS 0.2 μm or 0.45 μm PES Membrane Capsule Filter	AseptiSure KS 0.2 μm or 0.45 μm PES Membrane Cartridge Filter	AseptiSure HS 0.2 μm or 0.45 μm High Temperature PES Membrane Cartridge Filter			
Buffer filtration	- Bioburden reduction - Absolute retention	AseptiCap KS - γ 0.2 μm or 0.45 μm PES Membrane Capsule Filter	AseptiCap KS 0.2 μm or 0.45 μm PES Membrane Capsule Filter	AseptiSure KS 0.2 μm or 0.45 μm PES Membrane Cartridge Filter	AseptiSure HS 0.2 μm or 0.45 μm High Temperature PES Membrane Cartridge Filter			
Sterile filtration of vaccines and therapeutic proteins	 Absolute retention Low protein binding Low holdup volume 	AseptiCap KS - γ 0.2 μm PES Membrane Capsule Filter	AseptiCap KS 0.2 μm PES Membrane Capsule Filter	-	-			
Pharmaceuticals								
Large Volume Parenterals	 Absolute retention High throughputs 	_	_	AseptiSure KS 0.2 µm PES Membrane Cartridge Filter	AseptiSure HS 0.2 µm High Temperature PES Membrane Cartridge Filter			
Small Volume Parenterals	 Absolute retention Low Protein Binding Wide Chemical Compatiblity 	AseptiCap KS - γ 0.2 μm PES Membrane Capsule Filter	AseptiCap KS 0.2 μm PES Membrane Capsule Filter	AseptiSure KS 0.2 µm PES Membrane Cartridge Filter	AseptiSure HS 0.2 µm High Temperature PES Membrane Cartridge Filter			
WFI	- Absolute retention	AseptiCap KS - γ 0.2 μm PES Membrane Capsule Filter	AseptiCap KS 0.2 μm PES Membrane Capsule Filter	AseptiSure KS 0.2 µm PES Membrane Cartridge Filter	AseptiSure HS 0.2 µm High Temperature PES Membrane Cartridge Filter			

AseptiCap KL/KS Inline Capsule Filters (25mm and 50mm)

Specially designed filters for process development and formulation development labs with identical materials of construction for easy scale up to large capsule and cartridge filters.

50mm is a specially vented device, for use with peristaltic pump, to ensure easy removal of entrapped air in the upstream.

Radiation Sterilizable:	AseptiCap KL/KS -γ
Autoclavable:	AseptiCap KL/KS



		Constr	uction					
Membrane			Hydrophilic PES					
Plastic Parts			Polypropylene					
Final Filter Pore	Size	0.1 μm	0.2 μm	0.45 μm				
Prefilter Pore Siz (In case of Asept		0.2 μm, 0.45 μm	0.8 μm, 0.65 μm					
		Integrity Testi	ng/Retention					
Bubble Point		\geq 26 psi (1.82 Kg/cm ²) with 50% IPA \geq 65 psi (4.56 Kg/cm ²) with Water	\geq 50 psi (3.52 Kg/cm ²) with Water	\geq 30 psi (2.11 Kg/cm ²) with Water				
Microbial Reten	ition	LRV >7 for <i>Acholeplasma laidlawii</i> (ATCC 23206) per cm ²	LRV >7 for <i>Brevundimonas diminuta</i> (ATCC 19146) per cm ² (ATCC 14756) pe					
		Siz	ze					
Size		25 mm		50 mm				
Effective Filtrati	on Area (Nominal)	5 cm ²		20 cm ²				
		Opera	tional					
Max. Operating	Temperature	55 °C		60 °C				
Max. Differentia	al Pressure	75 Psi (5 Kg/cm²) @ 25	°C 42 P	42 Psi (3 Kg/cm²) @ 30 °C				
Hold-up Volum	e(with air purge)	<50 μL		<200 µL				
Burst Pressure		> 14 Kg/cm ²		> 8 Kg/cm ²				
	By Irradiation	AseptiCap KL/KS -γ: Gamma Irradiatable up to 50 kGy. These filters should not be autoclaved or in-line steam sterilized.						
Sterilization	By Gas	AseptiCap KL/KS: Sterilizable by Ethy	lene Oxide					
	By Autoclave	AseptiCap KL/KS: Autoclavable at 12	5°C for 30 minutes, 25 cycles					
		These cannot be In-line steam steri	lized					
Shelf Life		3	2 years after gamma sterilization years after Ethylene Oxide sterilization					
pH Compatibili	ty		Compatible with pH range of 1-10					

Water Flow Rates

AseptiCap KL -γ 25 mm

AseptiCap KL - γ 50 mm

Ordering Information

AseptiCap KL/KS and AseptiCap KL/KS - y, 25 mm

Туре		Si	Size		Size	Inlet/Outlet		Radiation Sterilizable		х	Sterility		Pack Size	
AseptiCap KL	Code	Dia	Code		Code		Code		Code			Code		Code
AseptiCap KS (0.2 µm Upstream)	IKEX IKS1	25 mm	06	0.1 μm	36	Female Luer Lock	м	Yes	R		Non Sterile	1	100	04
AseptiCap KS (0.45 μm Upstream)	IKSX			0.2 μm	01	Male Luer Slip	N H	No	Х		EO Sterile	2		
AseptiCap KS (0.65 μm Upstream)	IKS3			0.45 μm	02	1⁄4" Hose Barb	В				Gamma Sterile	3		
<i>AseptiCap KS</i> (0.8 μm Upstream)	IKS5													
Example		-												
		0	6	0	1	MN			,	v	1		0/	

IKLX 06 01 MN R X 1 04			1		R	MN	01		INLA
------------------------	--	--	---	--	---	----	----	--	------

AseptiCap KL/KS and AseptiCap KL/KS -γ, 50 mm

Туре		Si	Size		Pore Size		Inlet/Outlet		ation izable	x	Sterility		Pack Size	
	Code	Dia	Code		Code		Code		Code			Code		Code
AseptiCap KL	VKLX	50 mm	10	0.1 µm	36	1⁄4″- 3⁄8″SHB	В	Yes	R		Non Sterile	1	10	02
<i>AseptiCap KS</i> (0.2 μm Upstream)	VKS1			0.2 μm	01	³ ⁄ ₄ " Sanitary	S	No	Х		EO Sterile	2		
<i>AseptiCap KS</i> (0.45 μm Upstream)	VKSX			0.45 μm	02	Flange					Gamma Sterile	3		
AseptiCap KS (0.65 µm Upstream)	VKS3											1		
<i>AseptiCap KS</i> (0.8 μm Upstream)	VKS5													
Example														
VKSX		1	0	3	6	BS)	(X	1		0	2

Note: Gamma Sterile filters cannot be Gamma Irradiated again

Example for Non Sterile: VKSX1036BBRX102 Example for Gamma Sterile: VKSX1036BBXX302

For End Connection availability and dimensions with different sizes refer Pages 89-90.

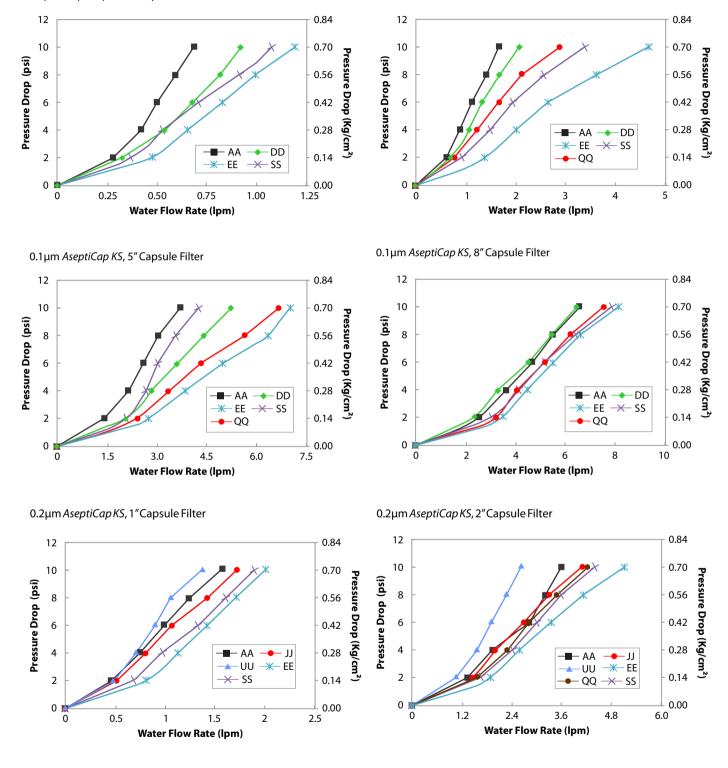

AseptiCap KL/KS Small Capsule Filters (1", 2", 5", 8")

Polyethersulfone membrane capsule filters are self contained, ready to use, disposable filtration devices that contain a mini cartridge filter element sealed inside a polypropylene housing. These offer highest packing density of the membrane resulting in a very compact capsule offering long service life.

 Radiation Sterilizable:
 AseptiCap KL/KS-γ

Autoclavable:

AseptiCap KL/KS

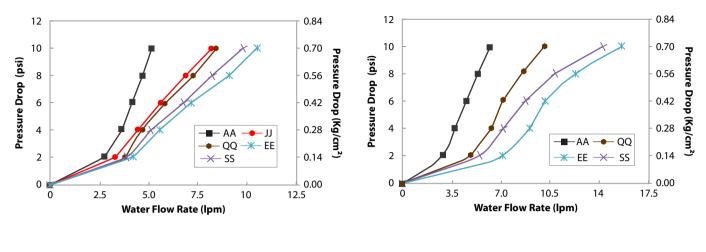


		Const	ruction					
Membrane			Hydroph	nilic PES				
Support (Draina	age) Layers		Polye	ester				
Plastic Parts			Polypro	pylene				
Final Filter Pore	Size	0.1 µm	0.2	μm	0.45 μm			
Prefilter Pore Siz (In case of Asept		0.2 μm, 0.45 μm	0.8 μm, 0.65 j	μm, 0.45 μm	0.8 μm, 0.65 μm			
		Integrity Test	ing/Retention					
Bubble Point		\geq 26 psi (1.82 Kg/cm ²) with 50% IPA \geq 65 psi (4.56 Kg/cm ²) with Water	<u>></u> 50 psi (3.9 with V		\geq 30 psi (2.11 Kg/cm ²) with Water			
Microbial Reten	tion	LRV >7 for <i>Acholeplasma laidlawii</i> (ATCC 23206) per cm ²	LRV >7 for <i>Brevundimonas diminuta</i> (ATCC 19146) per cm ²		LRV >7 for Serratia marcescens (ATCC 14756) per cm ²			
		Si	ze					
Size		1″	2″ 5″		8″			
Effective Filtrati	on Area (Nominal)	250 cm ²	500 cm ² 1000 cm ²		2000 cm ²			
Vent and Drain		¼ " Hose Barb with Platinum Cured Silicone 'O' ring						
		Opera	ational					
Max. Operating	Temperature	80 °C @ ≤ 30 psi (2 Kg/cm²)						
Max. Differentia	l Pressure		60 psi (4 Kg/o	cm²) @ 30 °C				
	By Irradiation	AseptiCap KL/KS -γ: Gamma Irradiatable up to 50 kGy. These filters should not be autoclaved or in-line steam sterilized.						
Sterilization	By Gas	AseptiCap KL/KS: Sterilizable by Ethy	lene Oxide					
	By Autoclave	AseptiCap KL/KS: Autoclavable at 12	25°C for 30 minutes, 2	25 cycles				
		These cannot be In-line steam steri	lized					
Shelf Life			2 years after gam 3 years after Ethylen					
pH Compatibilit	Ty		Compatible with	pH range of 1-10				

Water Flow Rates

0.1µm AseptiCap KS, 1" Capsule Filter

0.1µm AseptiCap KS, 2" Capsule Filter


End Connection Type:

A: ¼" Stepped Hose Barb Q: Single Step ½" Hose Barb E: 1½" Sanitary Flange J: Quick Connector S: ¾" Sanitary Flange U: Female Luer Lock D: ½" Hose Barb

Water Flow Rates

0.2µm AseptiCap KS, 5" Capsule Filter

0.2µm AseptiCap KS, 8"Capsule Filter

End Connection Type:

A: ¼" Stepped Hose Barb

Q: Single Step ½" Hose Barb

E: 1½" Sanitary Flange

J: Quick Connector

S: 34" Sanitary Flange

Ordering Information

AseptiCap KL/KS and AseptiCap KL/KS - γ

Туре			Size Pore S		Size	Inlet/Outlet			Radiation Sterilizable		II	Sterili	ty	Pack	c Size	
	Code			Code		Code		Code	Stern			Code		Code		Code
AseptiCap KL	DKLX	1	"	51	0.1 µm	36	1⁄4″ SHB	A		Code	Yes	В	Non Sterile	1	1	01
(Single Layer) AseptiCap KS		2		52	0.2 µm	01	1/4" MNPT	В	Yes	R	No Bell	Х	EO Sterile	2		
(0.2 µm Upstream)	DKS1	5	″	53	0.45 μm	02	1/2" MNPT	С	No	Х			Gamma	3		
AseptiCap KS	DKSX	8	″	57			1/2" Hose Barb	D					Sterile	3		
(0.45 µm Upstream)	DK3A						1½" Sanitary Flange	E								
<i>AseptiCap KS</i> (0.65 μm Upstream)	DKS3						³ 4″ Sanitary Flange	S								
AseptiCap KS	DKS5						Quick Connector	J								
(0.8 µm Upstream)	DIGS						Single Step ½" Hose Barb	Q								
							Female Luer Lock	U								
							Male Luer Slip	w								
							¾6″ Hose Barb	N								
Example:							³∕‰" Hose Barb	I								
DKSX			57	7	3	б	DD			R	x		1			01

Note: Gamma Sterile filters cannot be Gamma Irradiated again

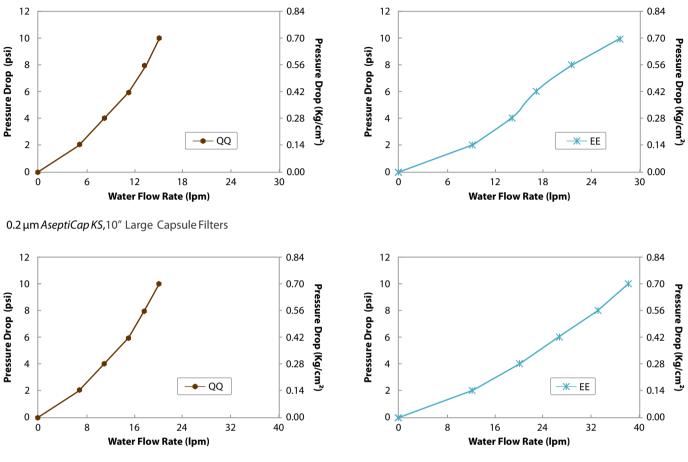
Example for Non Sterile: DKSX5136DDRX101 Example for Gamma Sterile: DKSX5136DDXX301

For End Connection, bell availability and dimensions with different sizes refer Pages 89-90.

AseptiCap KS Large Capsule Filters (5", 10", 20", 30")

These are large disposable Polyethersulfone membrane capsule filters for high value biopharma manufacturing processes, providing a unique combination of high throughputs and low hold up volumes. These capsule filters offer serial filtration incorporating a large pore size upstream membrane to protect the downstream membrane and do away with the time and expense associated with assembling, cleaning and validating stainless steel housings.

Radiation Sterilizable: AseptiCap KS - γ


Autoclalvable: AseptiCap KS

		Constr	ruction						
Membrane			Hydrophilic PES						
Support (Draina	age) Layers		Polyester						
Plastic Parts			Polypropylene						
Final Filter Pore	Size	0.1 µm	0.2 μm	0.45 μm					
Prefilter Pore Siz	ze	0.2 μm, 0.45 μm	0.8 μm, 0.65 μm, 0.45 μm	0.8 μm, 0.65 μm					
		Integrity Test	ing/Retention						
Bubble Point		\geq 26 psi (1.82 Kg/cm ²) with 50% IPA \geq 65 psi (4.56 Kg/cm ²) with Water	\geq 50 psi (3.52 Kg/cm ²) with Water	\geq 30 psi (2.11 Kg/cm ²) with Water					
Max. Air Diffusio 10″ Capsule Filte		\leq 29 ml/min @ 50 psi (3.52 Kg/cm ²) with Water	\leq 30 ml/min @ 37 psi (2.6 Kg/cm ²) with Water	\leq 35 ml/min @ 22 psi (1.54 Kg/cm ²) with Water					
Microbial Reten	tion	LRV >7 for <i>Acholeplasma laidlawii</i> (ATCC 23206) per cm ²	LRV >7 for <i>Brevundimonas diminuta</i> (ATCC 19146) per cm ²	LRV >7 for <i>Serratia marcescens</i> (ATCC 14756) per cm ²					
		Si	ze						
Size		5″	10" 20"	30″					
Effective Filtrati	on Area (Nominal)	3000 cm ²	6000 cm ² 12000 cr	n ² 18000 cm ²					
Vent and Drain		¼" Hose Barb with platinum cured Silicone O' ring							
		Opera	tional						
Max. Operating	Temperature		80 °C @ ≤ 30 psi (2 Kg/cm²)						
Max. Differentia	I Pressure	60 psi (4 Kg/cm²) @ 30 °C							
	By Irradiation	AseptiCap KL/KS -γ: Gamma Irradiatable up to 50 kGy. These filters should not be autoclaved or in-line steam sterilized.							
Sterilization	By Gas	AseptiCap KL/KS: Sterilizable by Ethy	lene Oxide						
	By Autoclave	AseptiCap KL/KS: Autoclavable at 12							
		These cannot be In-line steam steri							
Shelf Life			2 years after gamma sterilization 3 years after Ethylene Oxide sterilizatio	n					
pH Compatibilit	ty		Compatible with pH range of 1-10						

Water Flow Rates

0.1 µm AseptiCap KS, 10" Large Capsule Filters

End Connection Type: Q: Single Step ½" Hose Barb E: 1½" Sanitary Flange

Ordering Information

AseptiCap KS and AseptiCap KS- γ

	Si	ze	Pore	Size	Inlet/Outle	t					Sterili	ty	Pac	k Size
Code		Code		Code		Code			/ 1-1	-		Code		Code
LKS1	5″*	53	0.1 µm	36	1½" Sanitary Flange	E					Non Sterile	1	1	01
	10″	54	0.2 μm	01	Cinele Chen 1/ //			R		^	EO Sterile	2		
LKSX	20″	55	0.45 μm	02	Hose Barb	Q	No	Х	T-line**	Т	Gamma	2		
1 K 5 3	30″	56			¾" Sanitary Flange	S					Sterile	5		
ERSS					3/8" Hose Barb									
LKS5					1" Hose Barb	Z								
	LKS1 LKSX LKS3	Code 5"* LKS1 5"* 10" 20" LKSX 20" LKS3 30"	LKS1 5"* 53 10" 54 20" 55 30" 56 LKS3	Code Code Code LKS1 5″* 53 0.1 μm 10″ 54 0.2 μm LKSX 20″ 55 0.45 μm LKS3 30″ 56 56	Code Code Code 5"* 53 0.1 μm 36 10" 54 0.2 μm 01 LKSX 20" 55 0.45 μm 02 LKS3 30" 56 56 56	Code Code Code Code Image: Code	Code Code Code Code Code Code 5"* 53 0.1 μm 36 1½" Sanitary Flange E 10" 54 0.2 μm 01 Single Step ½" Q 20" 55 0.45 μm 02 ¾"Sanitary Flange S 1KS3	Code Code Code Code Code Steril LKS1 5" 53 0.1 µm 36 1½" Sanitary Flange E 10" 54 0.2 µm 01 Single Step ½" Q No LKS3 30" 56 3/8" Hose Barb I Single Step ½" No	Code Code Code Code Code Code Sterilizable Sterilizable	Code Code <t< td=""><td>Code Code Inline X Code Inline X T-line X T Inline X X T Inline X</td><td>Code Code No Sterilizable Sterilizable No Sterilizable No Sterilizable</td><td>Code Code No X T-line No Sterilizable No <t< td=""><td>Code Code No Code No Sterilizable No No Sterilizable No No Sterilizable No Sterilizable No Sterilizable <t< td=""></t<></td></t<></td></t<>	Code Inline X Code Inline X T-line X T Inline X X T Inline X	Code No Sterilizable Sterilizable No Sterilizable No Sterilizable	Code No X T-line No Sterilizable No <t< td=""><td>Code Code No Code No Sterilizable No No Sterilizable No No Sterilizable No Sterilizable No Sterilizable <t< td=""></t<></td></t<>	Code No Code No Sterilizable No No Sterilizable No No Sterilizable No Sterilizable No Sterilizable <t< td=""></t<>

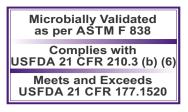
Example:

	LKSX	54	02	EE	R	т	1	01
--	------	----	----	----	---	---	---	----

* Size 5" is available in In-line Capsule Filters Only

** T-line Capsule Filters are available with $1^{\prime}\!\!2''$ Sanitary Flange connections Only

Note: Gamma Sterile filters cannot be Gamma Irradiated again


Example for Non Sterile: LKSX5402EERX101 Example for Gamma Sterile: LKSX5402EEXX301

For End Connection availability and dimensions with different sizes refer Pages 89-90.

AseptiCap KO Small Capsule Filters (1", 2", 5", 8")

AseptiCap KO capsule filters incorporate a low protein binding PES membrane with polypropylene drainage layers to ensure pH compatibility from 1-14 making these ideal for alkaline fluid streams.

Specifications

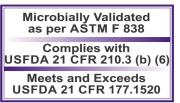
			Construction								
Membrane			Hydrophil	ic PES							
Support (Drainag	ge) Layers	Polypropylene									
Plastic Parts		Polypropylene									
Filter Pore Size		0.2 µ	ım	0.4	5 µm						
		Integrit	y Testing/Retention								
Bubble Point		<u>></u> 50 psi (3.52 Kg/	cm²) with Water	<u>></u> 30 psi (2.11 Kg	g/cm ²) with Water						
Microbial Retent	ion	LRV >7 for Brevundimonas dim	<i>ninuta</i> (ATCC 19146) per cm ²	LRV >7 for Serratia marces	scens (ATCC 14756) per cm ²						
			Size								
Size		1″ 2″		5″	8″						
Effective Filtratio	on Area (Nominal)	250 cm ²	500 cm ²	1000 cm ²	2000 cm ²						
Vent and Drain			1/4" Hose Barb with platinu	m cured Silicone 'O' ring							
			Operational								
Max. Operating T	Temperature		80 °C @ <u><</u> 30 ps	(2 Kg/cm ²)							
Max. Differential	Pressure		60 psi (4 Kg/cn	1²) @ 30 °C							
Sterilization	By Gas		Sterilizable by Et	nylene Oxide							
Stermzation	By Autoclave	Autoclavable	at 125 °C for 30 minutes, 25 cy	cles. Cannot be in-line stea	m sterilized						
Typical Water Flo	ow Rates (0.2 μm, 8″)	11 lpm @ 0.70 Kg/cm² @ 27 °C									
Shelf Life			3 years after Ethylene Oxide sterilization								
pH Compatibility	/	Compatible with pH range of 1-14									

Ordering Information

Туре		Si	ze	Pore	Size	Inlet/Outlet		x	Х	Sterili	ity	Pack	c Size
	Code		Code		Code		Code				Code		Code
AseptiCap KO	DKLO	1″	51	0.2 μm	01	1⁄4″ SHB	A			Non Sterile	1	1	01
		2″	52	0.45 μm	02	1⁄2″ Hose Barb	D			EO Sterile	2		
		5″	53			1½" Sanitary Flange	E						
		8″	57			¾" Sanitary Flange	S						
						Quick Connector	J						
						Single Step ½" Hose Barb	Q						
						Female Luer Lock	U						
						Male Luer Slip	W						
						¾₀″ Hose Barb	Ν						
Example:	Example:			³∕₃" Hose Barb	I								
DKLO	D	5	57	0	1	DD		Х	Х	1		0	1

For End Connection availability and dimensions with different sizes refer Pages 89-90.

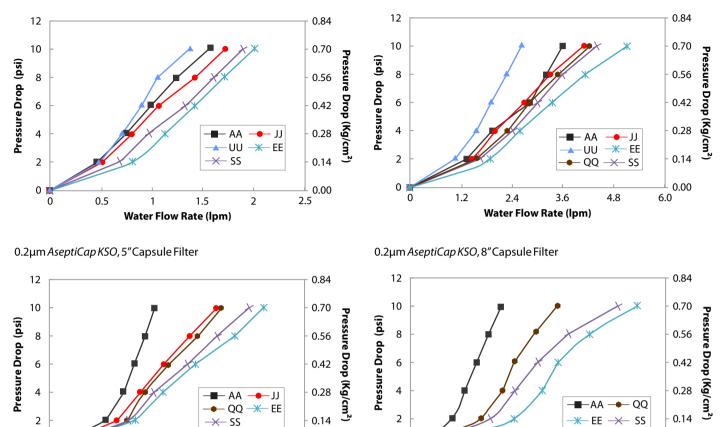
AseptiCap KSO Small Capsule Filters (1", 2", 5", 8")


mdi AseptiCap KSO are Polyethersulfone membrane capsule filters offering wide pH (1-14) compatibility. These filters are specially designed for alkaline fluid streams in bio-pharma manufacturing processes, with added advantages of high throughputs and low hold up volumes.

These capsule filters offer serial filtration incorporating a large pore size upstream membrane to protect the downstream membrane for enhanced throughputs.

AseptiCap KSO are validated for use in pharmaceutical and biopharmaceutical applications.

Radiation Sterilizable:	AseptiCap KSO -γ
Autoclavable:	AseptiCap KSO



			Construction						
Membrane			Hydrop	hilic PES					
Support (Draina	ge) Layers		Polypro	opylene					
Plastic Parts			Polypro	opylene					
Final Filter Pore	Size	0.2	μm	0.45	μm				
Pre-filter Pore Si	ze	0.8 μm,	0.45µm	0.8	μm				
		Integr	ity Testing/Retention						
Bubble Point		≥ 50 psi (3. with \		<u>></u> 30 psi (2.1 with V					
Microbial Reten	tion	LRV >7 for Brevund (ATCC 1914		LRV >7 for Serra (ATCC 1475					
			Size						
Size		1″	2″	5″	8″				
Effective Filtration	on Area (Nominal)	250 cm ²	500 cm ²	1000 cm ²	2000 cm ²				
Vent and Drain			1⁄4" Hose Barb with plati	num cured Silicone 'O' ring					
			Operational						
Max. Operating	Temperature		80 °C @ <u>≤</u> 30	psi (2 Kg/cm²)					
Max. Differentia	l Pressure		60 psi (4 Kg/	′cm²) @ 30 °C					
	By Irradiation	AseptiCap KSO - γ: Gamma Ir sterilized.	rradiatable up to 50 kGy. The	ese filters should not be autoc	laved or in-line steam				
Sterilization	By Gas	AseptiCap KSO: Sterilizable b	by Ethylene Oxide						
	D. A. 4 I	AseptiCap KSO: Autoclavable at 125°C for 30 minutes, 25 cycles							
	By Autoclave	These cannot be In-line ste	am sterilized						
Shelf Life				nma Sterilization ne Oxide Sterilization					
pH Compatibilit	у		Compatible with	pH range of 1-14					

Water Flow Rates

0.2µm AseptiCap KSO, 1" Capsule Filter

0

0

0.00

12.5

End Connection Type:

0

0

A: ¼" Stepped Hose Barb Q: Single Step ½" Hose Barb

5.0

7.5

Water Flow Rate (Ipm)

10

E: 11/2" Sanitary Flange J: Quick Connector S: 3/4" Sanitary Flange J: Quick Connector

7.0

10.5

Water Flow Rate (Ipm)

14

3.5

0.00

17.5

Ordering Information

AseptiCap KSO and AseptiCap KSO-γ

2.5

Туре		Si	ze	Pore	Size	Inlet/Outlet			ation izable	х	Sterili	ty	Pack	c Size
	Code		Code		Code		Code	Stern				Code		Code
AseptiCap KSO	окох	<u>1" 51</u> 0.2 μm 01 ¼" SHB A		Α		Code		Non Sterile	1	1	01			
(0.45 µm Upstream)		2″	52	0.45 μm	02	1/2" Hose Barb	D	Yes	R		EO Sterile	2		
AseptiCap KSO	DKO5	5″	53			1½" Sanitary Flange	E	No	Х		Gamma			
(0.8 µm Upstream)		8″	57			³ ⁄4" Sanitary Flange	S				Sterile	3		
						Quick Connector	J							
						Single Step ½"Hose Barb	Q							
						Female Luer Lock	U							
						Male Luer Slip	W							
						¾6" Hose Barb	N							
						³∕₃″ Hose Barb	I							
Example:	Example:													
DKOX	DKOX 52 01 EE				R	Х	1		01	1				

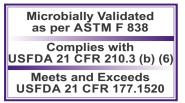
Note: Gamma Sterile filters cannot be Gamma Irradiated again

Example for Non Sterile: DKOX5202EERX101 Example for Gamma Sterile: DKOX5202EEXX301

For End Connection availability and dimensions with different sizes refer Pages 89-90.

0.2µm AseptiCap KSO, 2" Capsule Filter

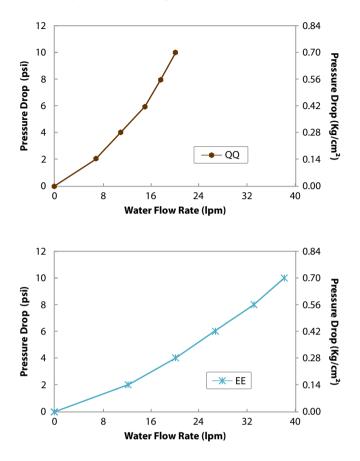
AseptiCap KSO Large Capsule Filters (5", 10", 20", 30")


mdi AseptiCap KSO are Polyethersulfone membrane capsule filters offering wide pH (1-14) compatibility. These filters are specially designed for alkaline fluid streams in biopharma manufacturing processes, with added advantages of high throughputs and low hold up volumes.

These capsule filters offer serial filtration incorporating a large pore size upstream membrane to protect the downstream membrane for enhanced throughputs.

AseptiCap KSO are validated for use in pharmaceutical and biopharmaceutical applications.

Radiation Sterilizable:	AseptiCap KSO -γ
Autoclalvable:	AseptiCap KSO



			Construction						
Membrane			Hydrop	hilic PES					
Support (Draina	ige) Layers		Polypr	opylene					
Plastic Parts			Polypr	opylene					
Final Filter Pore	Size	0.2	um	0.45 µm					
Pre-filter Pore Si	ize	0.8 μm, 0.45μm 0.8 μm							
		Integri	ity Testing/Retention						
Bubble Point		<u>></u> 50 psi (3.52 Kg/	² cm ²) with Water	<u>></u> 30 psi (2.11 Kg	/cm ²) with Water				
Max. Air Diffusio 10″ Capsule Filte		<u><</u> 30 ml/min @ 37 with V		<u><</u> 35 ml/min @ 22 with ۱					
Microbial Reten	tion	LRV >7 for Brevund (ATCC 1914		LRV >7 for <i>Serratia marcescens</i> (ATCC 14756) per cm ²					
			Size						
Size		5″	10″	20″	30″				
Effective Filtrati	on Area (Nominal)	3000 cm ²	18000 cm ²						
Vent and Drain		1/4" Hose Barb with platinum cured Silicone 'O' ring							
			Operational						
Max. Operating	Temperature		80 °C @ <u><</u> 30	psi (2 Kg/cm²)					
Max. Differentia	l Pressure		60 psi (4 Kg,	/cm²) @ 30 °C					
	By Irradiation	AseptiCap KSO - γ: Gamma Ir sterilized.	radiatable up to 50 kGy. The	ese filters should not be auto	claved or in-line steam				
Sterilization	By Gas	AseptiCap KSO: Sterilizable b	y Ethylene Oxide						
	Dy Auto davia	AseptiCap KSO: Autoclavable at 125°C for 30 minutes, 25 cycles							
	By Autoclave	These cannot be In-line stea	am sterilized						
Shelf Life				mma Sterilization ne Oxide Sterilization					
pH Compatibilit	.y	Compatible with pH range of 1-14							

Water Flow Rates

0.2 µm AseptiCap KSO,10" Large Capsule Filters

Ordering Information

AseptiCap KSO and AseptiCap KSO-γ

Туре		Si	ze	Pore Size		Inlet/Outlet			ation izable		ine line	Sterility		Pacl	k Size
	Code		Code		Code		Code	Stern		/ 1-1	-		Code		Code
AseptiCap KSO	LKOX	5″*	53	0.2 μm	01	1½" Sanitary Flange	E	Vee	Code	Inline	Code X	Non Sterile	1	1	01
(0.45 µm Upstream)		10″	54	0.45 μm	02	Single Step ½″	-	Yes No	R X	T-line	× -	EO Sterile	2		
<i>AseptiCap KS</i> O (0.8 μm Upstream)	LKO5	20″	55			Hose Barb	Q	NO	X	I-IIIIe I	1	Gamma	3		
(o.o µiii opsticuiii)		30″	56			¾" Sanitary Flange	S					Sterile	5		
						3/8" Hose Barb	I								
						1" Hose Barb	Z								
Example:															
LKOX		5	4	0	1	EE			R	1	г	1		0	1

* Size 5" is available in In-line Capsule Filters Only

Note: Gamma Sterile filters cannot be Gamma Irradiated again

Example for Non Sterile: LKOX5402EERX101 Example for Gamma Sterile: LKOX5402EEXX301

For End Connection availability and dimensions with different sizes refer Pages 89-90.

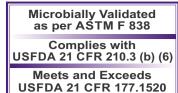
AseptiSure HS Mini Cartridge filters

mdi Polyethersulfone (PES) membrane mini cartridge filters type *Aseptisure HS* are high temperature resistant filtration devices. These are designed to withstand high pressure steam sterilization upto 135°C.

Aseptisure HS mini cartridge filters with Polyethersulfone membrane serial layers offer enhanced throughputs, thus ensuring better economics.

These are validated for key performance parameters such as retention efficiency, chemical compatibility, extractables, heat stability and flow rates.

Specifications


	Cons	struction	
Membrane		Hydrophilic PES	
Support (Drainage) Layers		Polyester	
Plastic Parts		Polypropylene	
Final Filter Pore Size	0.1 μm	0.2 μm	0.45 μm
Prefilter Pore Size	0.2 μm, 0.45 μm	0.8 μm, 0.65 μm, 0.45 μm	0.8 μm, 0.65 μm
	Integrity Te	esting/Retention	
Bubble Point	\geq 26 psi (1.82 Kg/cm ²) with 50% IPA \geq 65 psi (4.56 Kg/cm ²) with Water	> 50psi (3.52Kg/cm²) with Water	> 30psi (2.11Kg/cm ²) with Water
Microbial Retention	LRV >7 for <i>Acholeplasma laidlawii</i> (ATCC 23206) per cm ²	LRV >7 for <i>Brevundimonas diminuta</i> (ATCC 19146) per cm ²	LRV >7 for Serratia marcescens (ATCC 14756) per cm ²
		Size	
Size	2.5″		5″
Effective Filtration Area (Nominal)	1000 cm ²		2000 cm ²
	Оре	erational	
Water Flow Rate for 0.2μm @ 0.70kg/cm² @27°C	9 lpm		15 lpm
Max. Operating Temperature		80 °C @ <u><</u> 2 Kg/cm ² (30 psi)	
Max. Differential Pressure		50 psi (3.5 Kg/cm²) @ 25 °C	
Reverse Pressure		<u><</u> 10 psi (0.7 Kg/cm²) @ 25 °C	
Sterilization	In-line steam sterilizable upto 135 °C	for 30 minutes at a maximum different	ial pressure of 5 psi (0.35 Kg/cm²), 25 cycles
pH Compatibility		Compatible with pH range of 1-10	

Ordering Information

Туре		Si	ze	Pore	Size	Ada	pter	Elaston	ner	Sterili	Sterility		k Size
	Code		Code		Code		Code		Code		Code		Code
AseptiSure HS	CPH1	2.5″	50	0.1 µm	36	4463	E0	Silicone	SS	Non Sterile	1	1	01
(0.2 μm Upstream)	_	5″	53	0.2 µm	01	4463B	HO		·				
<i>AseptiSure HS</i> (0.45 μm Upstream)	СРНХ			0.45 μm	02	4440	UO	*G0 adapter	is not av	ailable with ela	stomer	Plazca m	ention
AseptiSure HS	СРНЗ					Seal-K	G0*			omer code while			lention
(0.65 µm Upstream)	CFIIS					Seal-O	F0	-					
<i>AseptiSure HS</i> (0.8 μm Upstream)	CPH5					Seal-M	JO						
xample:	,												
СРНХ		5	0	01	1	E)	SS		1		0	1

AseptiSure HS Standard Cartridge Filters

AseptiSure HS high temperature resistant, serial layer Polyethersulfone cartridge filters are designed to withstand high pressure differential upto 0.3 Kg/cm² (5 psi) at high steam sterilization temperatures of upto 135 °C.

Specifications

	Con	struction					
Membrane		Hydr	rophilic PES				
Support (Drainage) Layers		Р	olyester				
Plastic Parts		Poly	propylene				
Final Filter Pore Size	0.1 μm	0.2	2 µm	0.45 μm			
Prefilter Pore Size	0.2 μm, 0.45 μm	0.8 μm, 0.6	5 μm, 0.45 μm	0.8 μm, 0.65 μm			
	Integrity Te	esting/Retentio	n				
Bubble Point	\geq 26 psi (1.82 Kg/cm ²) with 50% IPA \geq 65 psi (4.56 Kg/cm ²) with Water		3.52 Kg/cm²) n Water	\geq 30 psi (2.11 Kg/cm ²) with Water			
Air Diffusion Flow (10″ Cartridge Filter)	\leq 29 ml/min @ 50 psi (3.52 Kg/cm ²) with Water		37 psi (2.6 Kg/cm²) n Water	\leq 35 ml/min @ 22 psi (1.54 Kg/cm ²) with Water			
Microbial Retention	LRV >7 for Acholeplasma laidlawii LRV >7 for Brevundimonas diminuta (ATCC 23206) per cm ² (ATCC 19146) per cm ²			LRV >7 for Serratia marcescens (ATCC 14756) per cm ²			
		Size					
Size	5″	10″	20″	30″			
Effective Filtration Area (Nominal)	3000 cm ²	6000 cm ²	12000 cm ²	18000 cm ²			
	Ор	erational					
Typical Water Flow Rates (for 0.2 μm @ 0.70 Kg/cm² @ 27 °C)	25 lpm	45 lpm	81 lpm	113 lpm			
Max. Operating Temperature		80 °C @ ≤	30psi (2 Kg/cm²)				
Max. Differential Pressure		50 psi (3.5	5 Kg/cm²) @ 25 °C				
Reverse Pressure	<u>≤</u> 10 psi (0.7 Kg/cm²) @ 25 °C						
Sterilization	In-line steam sterilizable upto 135 °C for 30 minutes at a maximum differential pressure of 5 psi (0.35 Kg/cm ²), 25 cycles						
pH Compatibility		Compatible w	vith pH range of 1-10				

Ordering Information

Туре		Size		Size Pore S		Adapter		Elastomer		Sterility		Pack Size	
	Code		Code		Code		Code		Code		Code		Code
AseptiSure HS	CPH1	5″	53	0.1 µm	36	7P	A0	Silicone	SS	Non Sterile	1	1	01
(0.2 µm Upstream)		10″	54	0.2 μm	01	7P without fin	A1	Viton	SV				
<i>AseptiSure HS</i> (0.45 μm Upstream)	СРНХ	20″	55	0.45 μm	02	28 with fin	C0	EPDM	SE				
AseptiSure HS (0.65 μm Upstream)	CPH3	30″	56			'O'	D0	FEP Encapsulated	FV				
<i>AseptiSure HS</i> (0.8 μm Upstream)	CPH5							Viton					
Example:													
СРНХ		5	54	0	01	A0		SS		1		0	1

AseptiSure HSR Mini Cartridge Filter

mdi Polyethersulfone (PES) membrane mini cartridge filters type *AseptiSure HSR* are designed to withstand high pressure differential upto 0.3 Kg/cm² (5 psi) at high steam sterilization temperatures of up to 135 °C.

These filters with Polyethersulfone membrane and Polypropylene support layers offer pH compatibility from 1 to 14, and are thus ideal for use with acidic as well as alkaline solutions.

mdi AseptiSure HSR Mini Cartridge filters are validated for key performance parameters such as retention efficiency, chemical compatibility, extractables, heat stability and flow rates.

Specifications

	Con	struction				
Membrane		Hydrophilic PES				
Support (Drainage) Layers		Polypropylene				
Plastic Parts		Polypropylene				
Final Filter Pore Size	0.1 μm	0.2 μm	0.45 μm			
Prefilter Pore Size	0.2 μm, 0.45 μm	0.8 μm, 0.65 μm, 0.45 μm	0.8 μm, 0.65 μm			
	Integrity Te	sting/Retention				
Bubble Point	\geq 26 psi (1.82 Kg/cm ²) with 50% IPA \geq 65 psi (4.56 Kg/cm ²) with Water	\geq 50 psi (3.52 Kg/cm ²) with Water	\geq 30 psi (2.11 Kg/cm ²) with Water			
Microbial Retention	LRV >7 for <i>Acholeplasma laidlawii</i> (ATCC 23206) per cm ²	LRV >7 for <i>Brevundimonas diminuta</i> (ATCC 19146) per cm ²	LRV >7 for <i>Serratia marcescens</i> (ATCC 14756) per cm ²			
		Size				
Size	2.5″		5″			
Effective Filtration Area (Nominal)	1000 cm ²		2000 cm ²			
	Оре	erational				
Typical Water Flow Rates (for 0.2µm @ 0.70 Kg/cm² @ 27 °C)	9 lpm		15 lpm			
Max. Operating Temperature		80 °C @ \leq 30psi (2 Kg/cm ²)				
Max. Differential Pressure		50 psi (3.5 Kg/cm²) @ 25 °C				
Reverse Pressure		<u>≤</u> 10 psi (0.7 Kg/cm²) @ 25 °C				
Sterilization	In-line steam sterilizable upto 135 °C for 30 minutes at a maximum differential pressure of 5 psi (0.35 Kg/cm ²), 25 cycl					
pH Compatibility	Compatible with pH range of 1-14					

Ordering Information

Туре		Si	ze	Pore	Size	Adap	Adapter		Elastomer		Elastomer		Sterility		Pack	c Size
	Code		Code		Code		Code	Γ		Code		Code		Code		
<i>AseptiSure HSR</i> (0.2 μm Upstream)	CHR1	2.5″ 5″	50 53	0.1 μm	36	4463	EO		Silicone	SS	Non Sterile	1	1	01		
AseptiSure HSR	CHRX	5	55	0.2 μm	01	4463B	НО									
(0.45 µm Upstream)	СППХ			0.45 μm	02	4440	UO		*G0 adapte	r is not av	ailable with el	actomer	Please n	ention		
<i>AseptiSure HS</i> R (0.65 μm Upstream)	CHR3					Seal-K	G0*				omer code whil			lention		
AseptiSure HSR	CHR5					Seal-O	F0									
(0.8 μm Upstream)	CIIIIS					Seal-M	JO									
Example:																
CHRX		5	53	0	01	EO)		SS		1		0	1		

AseptiSure HSR Standard Cartridge Filters

mdi Polyethersulfone (PES) membrane cartridge filters type *AseptiSure HSR* are high temperature resistant filtration devices. These are designed to withstand high pressure differential at high steam sterilization temperature upto 135°C. These filters exhibit high mechanical stability, and wide chemical compatibility even with alkaline process fluids.

These filters come with Polyethersulfone membrane serial layers and Polypropylene support layers to offer 1-14 pH compatibility.

mdi AseptiSure HSR cartridge filters are validated for key performance parameters such as retention efficiency, chemical compatibility, extractables, heat stability and flow rates.

Microbially Validated as per ASTM F 838 Complies with USFDA 21 CFR 210.3 (b) (6) Meets and Exceeds USFDA 21 CFR 177.1520

Specifications

	Con	struction					
Membrane		Hyd	rophilic PES				
Support (Drainage) Layers		Pol	ypropylene				
Body and Core		Pol	ypropylene				
Final Filter Pore Size	0.1 μm	0.	.2 μm	0.45 μm			
Prefilter Pore Size	0.2 μm, 0.45 μm	0.8 μm, 0.6	55 μm, 0.45 μm	0.8 μm, 0.65 μm			
	Integrity Te	esting/Retentio	on				
Bubble Point	\geq 26 psi (1.82 Kg/cm ²) with 50% IPA \geq 65 psi (4.56 Kg/cm ²) with Water		(3.52 Kg/cm²) h Water	\geq 30 psi (2.11 Kg/cm ²) with Water			
Air Diffusion Flow (10″ Cartridge Filter)	29 ml/min @ 50 psi (3.52 Kg/cm ²) with Water		37 psi (2.6 Kg/cm²) h Water	\leq 35 ml/min @ 22 psi (1.54 Kg/cm ²) with Water			
Microbial Retention	LRV >7 for Acholeplasma laidlawii (ATCC 23206) per cm ²	LRV >7 for <i>Brevundimonas diminuta</i> (ATCC 19146) per cm ²		LRV >7 for Serratia marcescens (ATCC 14756) per cm ²			
		Size					
Size	5″	10″	20″	30″			
Effective Filtration Area (Nominal)	3000 cm ²	6000 cm ²	12000 cm ²	18000 cm ²			
	Op	erational					
Typical Water Flow Rates (for 0.2µm @ 0.70 Kg/cm² @ 27 °С)	25 lpm	45 lpm	81 lpm	113 lpm			
Max. Operating Temperature		80 °C @ <u><</u>	30 psi (2 Kg/cm²)				
Max. Differential Pressure		50 psi (3.	5 Kg/cm²) @ 25 °C				
Reverse Pressure		<u><</u> 10 psi (0	.7 Kg/cm²) @ 25 °C				
Sterilization	In-line steam sterilizable upto 135 °C	for 30 minutes at	a maximum differentia	Il pressure of 5 psi (0.35 Kg/cm²), 25 cy			
pH Compatibility	Compatible with pH range of 1-14						

Ordering Information

Туре		Size		ze Pore Size		Adapte	Adapter		Elastomer		Sterility		c Size
	Code		Code		Code		Code		Code		Code		Code
AseptiSure HSR	CHR1	5″	53	0.1 µm	36	7P	A0	Silicone	SS	Non Sterile	1	1	01
(0.2 µm Upstream)		10″	54	0.2 μm	01	7P without fin	A1	Viton	SV				
AseptiSure HSR (0.45 μm Upstream)	CHRX	20″	55	0.45 μm	02	28 with fin	C0	EPDM	SE				
AseptiSure HSR (0.65 µm Upstream)	CHR3	30″	56	·		ʻ0'	D0	FEP Encapsulated	FV				
<i>AseptiSure HS</i> R (0.8 μm Upstream)	CHR5							Viton					
Example:													
CHRX		5	54	C)1	A0		SS		1		0	1

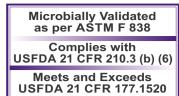
AseptiSure KS Mini Cartridge filters

mdi Polyetheresulfone (PES) membrane mini cartridge filters type *AseptiSure KS* are serial filtration devices with a larger pore size upstream PES membrane layer to protect the downstream final PES membrane layer from premature clogging and to give enhanced throughputs, thus resulting in better economics.

mdi Aseptisure KS filters are validated for key performance parameters such as retention efficiency, chemical compatibility, extractables, heat stability and flow rates. These are available in a variety of pore sizes to suit specific microfiltration needs in critical and specialized process applications.

Microbially Validated as per ASTM F 838 Complies with USFDA 21 CFR 210.3 (b) (6) Meets and Exceeds USFDA 21 CFR 177.1520

Specifications


	Const	ruction	
Membrane		Hydrophilic PES	
Support (Drainage) Layers		Polyester	
Plastic Parts		Polypropylene	
Final Filter Pore Size	0.1 μm	0.2 μm	0.45 μm
Prefilter Pore Size	0.2 μm, 0.45 μm	0.8 μm, 0.65 μm, 0.45 μm	0.8 μm, 0.65 μm
	Integrity Tes	ting/Retention	
Bubble Point	\geq 26 psi (1.82 Kg/cm²) with 50% IPA \geq 65 psi (4.56 Kg/cm²) with Water	> 50 psi (3.52Kg/cm²) with Water	> 30 psi (2.11Kg/cm ²) with Water
Microbial Retention	LRV >7 for Acholeplasma laidlawii (ATCC 23206) per cm ²	LRV >7 for <i>Brevundimonas diminuta</i> (ATCC 19146) per cm ²	LRV >7 for Serratia marcescens (ATCC 14756) per cm ²
	:	Size	
Size	2.5″		5″
Effective Filtration Area (Nominal)	1000 cm ²		2000 cm ²
	Оре	rational	
Water Flow Rate for 0.2µm @ 0.70kg/cm ² @27°C	9 lpm		15 lpm
Max. Operating Temperature		80 °C @ <u><</u> 2 Kg/cm ² (30 psi)	
Max. Differential Pressure		50 psi (3.5 Kg/cm²) @ 25 °C	
Reverse Pressure		<u><</u> 10 psi (0.7 Kg/cm²) @ 25 °C	
Sterilization	In-line steam sterilizable at 121°C for	30 minutes at a maximum differential p	pressure of 3 psi (0.21 kg/cm ²) , 25 cycle
pH Compatibility		Compatible with pH range of 1-10	

Ordering Information

Туре		S	ize	Pore	Size	Adap	oter	Elastomer		Sterility		Pack Si	
	Code		Code		Code		Code		Code		Code		C
AseptiSure KS	CPK1	2.5″	50	0.1 μm	36	4463	EO	Silicone	SS	Non Sterile	1	1	
(0.2 μm Upstream)	C	5″	53	0.2 µm	01	4463B	HO						
A <i>septiSure KS</i> 0.45 μm Upstream)	СРКХ		·	0.45 μm	02	4440	U0						
A <i>septiSure KS</i> (0.65 µm Upstream)	СРК3					Seal-K	G0*	Go adapter is not available with elastomer. Please					nent
						Seal-O	F0	XX in plac	e of elast	omer code whi	le orderi	ng	
A <i>septiSure KS</i> (0.8 μm Upstream)	CPK5					Seal-M	JO						
Example:													
СРКХ	CPKX 50 01		EC)	SS		1		0)1			

AseptiSure KS Standard Cartridge Filters

AseptiSure KS serial filtration Polyethersulfone cartridge filters incorporate a large pore size upstream membrane layer to protect the downstream terminal filtration membrane layer.

Specifications

	Cons	struction					
Membrane		Hydrop	hilic PES				
Support (Drainage) Layers		Poly	rester				
Plastic Parts		Polypro	opylene				
Final Filter Pore Size	0.1 μm	0.2	μm	0.45 μm			
Prefilter Pore Size	0.2 μm, 0.45 μm	0.8 μm, 0.65	μm, 0.45 μm	0.8 μm, 0.65 μm			
	Integrity Te	sting/Retention					
Bubble Point	\geq 26 psi (1.82 Kg/cm ²) with 50% IPA \geq 65 psi (4.56 Kg/cm ²) with Water		.52 Kg/cm²) Water	\geq 30 psi (2.11 Kg/cm ²) with Water			
Air Diffusion Flow (10" Cartridge Filter)	\leq 29 ml/min @ 50 psi (3.52 Kg/cm ²) with Water		7 psi (2.6 Kg/cm²) Water	\leq 35 ml/min @ 22 psi (1.54 Kg/cm²) with Water			
Microbial Retention	LRV >7 for <i>Acholeplasma laidlawii</i> (ATCC 23206) per cm ²		ndimonas diminuta 46) per cm²	LRV >7 for <i>Serratia marcescens</i> (ATCC 14756) per cm ²			
		Size					
Size	5″	10″	20″	30″			
Effective Filtration Area (Nominal)	3000 cm ²	6000 cm ²	12000 cm ²	18000 cm ²			
	Оре	erational					
Typical Water Flow Rates (for 0.2μm @ 0.70 Kg/cm² @ 27 °C)	25 lpm	45 lpm	81 lpm	113 lpm			
Max. Operating Temperature		80 °C @ <u><</u> 30	psi (2 Kg/cm²)				
Max. Differential Pressure		50 psi (3.5 Kg	/cm²) @ 25 °C				
Reverse Pressure		<u><</u> 10 psi (0.7 K	g/cm²) @ 25 °C				
Sterilization	In-line steam sterilizable at 121 ° C for 30 minutes at a maximum differential pressure of 3 psi (0.21 kg/cm ²) , 25 cycle						
pH Compatibility	Compatible with pH range of 1-10						

Ordering Information

Туре		Size		Pore	Size	Adapt	er	Elastom	ner	Sterili	ty	Pack	c Size
	Code		Code		Code		Code		Code		Code		Code
AseptiSure KS	CPK1	5″	53	0.1 μm	36	7P	A0	Silicone	SS	Non Sterile	1	1	01
(0.2 μm Upstream)		10″	54	0.2 µm	01	7P without fin	A1	Viton	SV				
AseptiSure KS (0.45 µm Upstream)	СРКХ	20″	55	0.45 μm	02	28 with fin	C0	EPDM	SE				
AseptiSure KS (0.65 µm Upstream)	СРК3	30″	56			'O'	D0	FEP Encapsulated	FV				
<i>AseptiSure KS</i> (0.8 μm Upstream)	CPK5							Viton					

Example:

CPKX 53	01	EO	SS	1	01
---------	----	----	----	---	----

Filters for Sterilization of Liquids: **PVDF** Membrane Filters

mdi produces a wide range of Gamma sterilizable and steam sterilizable Hydrophilic PVDF membrane capsule and cartridge filters to meet filtration requirements of biopharmaceutical and pharmaceutical processing.

These filters meet key process requirements such as high retention efficiency, very high protein recoveries, extremely low extractables, high throughputs, wide chemical compatibility etc.

Applications

Sterile Filtration of:

•	Antibodies	\triangleright	Cell culture media
•	Protein Solutions	\triangleright	Small volume parenteral

- ≻ \triangleright Buffers
- Small volume parenterals \geq
- - Vaccine concentrates \triangleright

Types Available

Gamma Sterilizable Capsule Filters	AseptiCap WS -γ
Autoclavable Capsule Filters	AseptiCap WS
High Temperature Resistant Steam Sterilizable Cartridge Filters	AseptiSure WS

Quality Assurance

These filter devices are manufactured in Class 10,000 clean rooms under ISO 9001 : 2015 certified quality management systems and are validated to meet compendia and regulatory requirements.

	Assurance
Toxicity	Passes Biological Reactivity Test, In Vivo, as per USP <88> for Class VI plastics
Cytotoxicity	Passes Biological Reactivity Test, In Vitro, as per USP <87> for Cytotoxicity
Bioburden	Bioburden level is < 1000 cfu/filter device as per ISO 11737-1: 2018
Bacterial Endotoxin	Aqueous extracts exhibit < 0.25 EU/ml as established by Limulus Amebocyte Lysate (LAL) Test as per USP <85>
Non Fiber Releasing	Passes test as per USP and comply with USFDA 21 CFR Part 210.3 (b)(6) for fiber release
Extractables with WFI	Passes test as per USP <661>
Oxidizable Substances	Passes test as per USP <1231>
Particle Shedding	Passes test as per USP <788> for particulate matter in injections
TOC/Conductivity at 25 °C	Meets the WFI requirements of USP <643> for Total Organic Carbon and USP <645> for Water Conductivity after a specified volume of purified water flush
Indirect Food Additive	All Polypropylene components meet the FDA Indirect Food Additive requirements cited in 21 CFR 177.1520
Good Manufacturing Practice	These products are manufactured in a facility which adheres to Good Manufacturing Practices

Filter Selection Chart

Application	Key Application	Gamma Sterilizable	Steam	Sterilizable
Area	Requirements	Capsule Filters Capsule Filters		Cartridge Filters
Biopharmaceutica	als			
Media preparation	- Mycoplasma removal (in case of mammalian Cell Culture)	AseptiCap WS - γ 0.1 μm PVDF Membrane Capsule Filter	AseptiCap WS 0.1 µm PVDF Membrane Capsule Filter	AseptiSure WS 0.1 μm High Temperature PVDF Membrane Cartridge Filter
	- Microbial retention (in case of microbial Fermentation)	AseptiCap WS - γ 0.2 μm PVDF Membrane Capsule Filter	AseptiCap WS 0.2 μm PVDF Membrane Capsule Filter	AseptiSure WS 0.2 μm High Temperature PVDF Membrane Cartridge Filter
Sterile filtration of vaccines and therapeutic proteins	 Absolute retention Low protein binding Low holdup volume 	AseptiCap WS - γ 0.2 μm PVDF Membrane Capsule Filter	AseptiCap WS 0.2 μm PVDF Membrane Capsule Filter	-

AseptiCap WS Inline Capsule Filters (25 mm and 50 mm)

These are low protein binding hydrophilic PVDF gamma sterilizable membrane inline capsule filters, designed for sterile filtration of very small fluid volumes in formulation and process development labs.

Radiation Sterilizable:	AseptiCap WS -γ
Autoclavable:	AseptiCap WS

Microbially Validated as per ASTM F 838

Complies with USFDA 21 CFR 210.3 (b) (6)

Construction								
Membrane			Hydrophilic PVDF					
Plastic Parts			Polypropylene					
Final Filter Pore	Size	0.1 µm	0.2 μm	0.45 μm				
Prefilter Pore Siz	ze	0.2 μm and 0.45 μm	0.8 μm and 0.45 μm	0.8 µm				
		Integrity Test	ing/Retention					
Bubble Point		\geq 28 psi (1.96 Kg/cm ²) with 50% IPA \geq 70 psi (4.92 Kg/cm ²) with Water	\geq 50 psi (3.52 Kg/cm ²) with Water	\geq 30 psi (2.11 Kg/cm ²) with Water				
Microbial Reten	tion	LRV >7 for <i>Acholeplasma laidlawii</i> (ATCC 23206) per cm ²	LRV >7 for <i>Brevundimonas diminuta</i> (ATCC 19146) per cm ²	LRV >7 for Serratia marcescens (ATCC 14756) per cm ²				
		Si	ze					
Size		25 mm		50 mm				
Effective Filtrati	on Area (Nominal)	5 cm ²		20 cm ²				
		Opera	tional					
Max. Operating	Temperature	55 °C		60 °C				
Max. Differentia	al Pressure	75 Psi (5 Kg/cm²) @ 25	5 °C 42 P	42 Psi (3 Kg/cm ²) @ 30 °C				
Hold-up Volum	e(with air purge)	<50 μL		<200 µL				
Burst Pressure		> 14 Kg/cm ²		> 8 Kg/cm ²				
	By Irradiation	AseptiCap WS- γ: Gamma Irradiatable sterilized.	e up to 50 kGy. These filters should not b	be autoclaved or in-line steam				
Sterilization	By Gas	AseptiCap WS: Sterilizable by Ethyler	ne Oxide					
	By Autoclave	AseptiCap WS: Autoclavable at 125°	C for 30 minutes, 2 cycles					
	by Autociave	These cannot be In-line steam ster	ilized					
Shelf Life		3	2 years after gamma sterilization 8 years after Ethylene Oxide sterilization					

Ordering Information

AseptiCap WS and AseptiCap WS-y, 25 mm

Туре			Size		Size	Inlet/Outlet		Radiation Sterilizable		x	Sterility		Pack Size	
	Code	Dia	Code				C 1							
<i>AseptiCap WS</i> (0.2 μm Upstream)	IWS1	25 mm	06	0.1	Code 36	Female Luer Lock	Code M	Yes	Code R		Non Sterile	Code	100	Code 04
<i>AseptiCap WS</i> (0.45 μm Upstream)	IWSX			0.1 μm 0.2 μm	01	Male Luer Slip	N	No	X		EO Sterile	2	100	04
AseptiCap WS (0.8 µm Upstream)	IWS5			0.45 μm	02	^⅓ ″ Hose Barb	н	110			Gamma Sterile	3		
						1/4" Hose Barb	В				L			
Example	xample													
IWSX		0	6	0	1	MN		F	2	х	1		04	4

AseptiCap WS and AseptiCap WS- γ , 50 mm

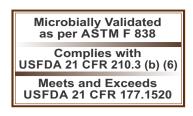
Туре		Siz	ze Pore Size Inlet/Outlet		Radia Sterili		x	Sterility		Pack	Size			
	Code	Dia	Code		Code		Code		Code			Code		Code
<i>AseptiCap WS</i> (0.2 μm Upstream)	VWS1	50 mm	10	0.1 μm	36	1⁄4″ SHB	В	Yes	R		Non Sterile	1	10	02
AseptiCap WS	VWSX			0.2 µm	01	34" Sanitary	s	No	Х		EO Sterile	2		
(0.45 μm Upstream) <i>AseptiCap WS</i> (0.8 μm Upstream)	VWS5			0.45 μm	02	Flange					Gamma Sterile	3		

Example

_								
	VWSX	10	36	BS	Х	Х	1	02

Note: Gamma Sterile filters cannot be Gamma Irradiated again

Example for Non Sterile: VWSX1036BBRX102 Example for Gamma Sterile: VWSX1036BBXX302


For End Connection availability and dimensions with different sizes refer Pages 89-90.

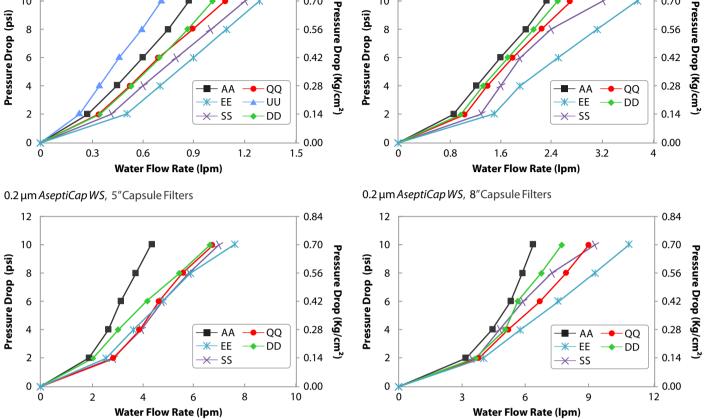
AseptiCap WS Small Capsule Filters (1", 2", 5", 8")

mdi AseptiCap WS are low protein binding hydrophilic PVDF membrane capsule filters offering serial filtration incorporating a larger pore size upstream membrane to protect the downstream membrane for enhanced throughput.

These capsule filters are validated to meet compendia and regulatory requirements and are well characterized. They meet key process requirements such as absolute retention efficiency, extremely low extractables, high throughputs, wide chemical compatibility and other important characteristics.

Radiation Sterilizable	:	AseptiCapWS-γ
Autoclavable	:	AseptiCap WS

		Const	ruction								
Membrane	Membrane Hydrophilic PVDF										
Support (Drainage) Layers Polyester											
Plastic Parts			Polypropylene								
Final Filter Pore	Size	0.1 µm	0.2 μm	0.45 μm							
Prefilter Pore Siz	ze	0.2 μm, 0.45 μm	0.8 μm and 0.45 μm	0.8 μm							
		Integrity Test	ing/Retention								
Bubble Point		\geq 28 psi (1.96 Kg/cm ²) with 50% IPA \geq 70 psi (4.92 Kg/cm ²) with Water	\geq 50 psi (3.52 Kg/cm ²) with Water	\geq 30 psi (2.11 Kg/cm ²) with Water							
Microbial Reten	tion	LRV >7 for <i>Acholeplasma laidlawii</i> (ATCC 23206) per cm ²	LRV >7 for <i>Brevundimonas diminuta</i> (ATCC 19146) per cm ²	LRV >7 for <i>Serratia marcescens</i> (ATCC 14756) per cm ²							
		Si	ize								
Size		1″	2″ 5″	8″							
Effective Filtrati	on Area (Nominal)	250 cm ²	500 cm ² 1000 cm	² 2000 cm ²							
Vent and Drain		14 ″ H	ose Barb with Platinum Cured Silicone	'O' ring							
		Opera	ational								
Max. Operating	Temperature		80 °C @ ≤ 30 psi (2 Kg/cm²)								
Max. Differentia	l Pressure		60 psi (4 Kg/cm²) @ 30 °C								
	By Irradiation	AseptiCap WS -γ: Gamma Irradiatable up to 50 kGy. These filters should not be autoclaved or in-line steam sterilized.									
Sterilization	By Gas	AseptiCap WS: Sterilizable by Ethyler	ne Oxide								
	By Autoclave	AseptiCap WS: Autoclavable at 125°	C for 30 minutes, 2 cycles								
	by Autoclave	These cannot be In-line steam sterilized									
Shelf Life	2 years after gamma sterilization 3 years after Ethylene Oxide sterilization										


Water Flow Rates

12

10

0.2 µm AseptiCap WS, 1" Capsule Filters

0.2 µm AseptiCap WS, 2" Capsule Filters 0.84 12 0.70 0.84 10 0.70 0.84 0.70 0.56 0.56 0.56

End Connection Type:

A: ¹/₄" Stepped Hose Barb D: ¹/₂" Hose Barb E: ¹/₂" Sanitary Flange J: Quick Connector U: Female Luer Lock Q: Single Step ¹/₂" Hose Barb S: ³/₄" Sanitary Flange

Ordering Information

AseptiCap WS and AseptiCap WS - γ

Туре		Size Po		Size	Inlet/Outlet			Bell		Sterility		Pack Size		
Code		Code		Code		Code	Stern			Code		Code		Code
DWS1	1″	51	0.1 µm	36	1⁄4″ SHB	Α			Yes	В	Non Sterile	1	1	01
	2″	52	0.2 μm	01	1⁄4″ MNPT	В			No Bell	Х	EO Sterile	2		
DWSX	5″	53	0.45 μm	02	1/2" MNPT	С	No*	Х			Gamma	2		
DWCE	8″	57			1⁄2" Hose Barb	D					Sterile	3		
DW33					1½" Sanitary Flange	E								
					¾" Sanitary Flange	S								
					Quick Connector	J								
					Single Step ½" Hose Barb	Q								
					Female Luer Lock	U								
					Male Luer Slip	W								
					¾6″ Hose Barb	N								
					¾″ Hose Barb	I								
	5	7	36	;	DD			R	x		1			01
		Code 1" DWS1 2" DWSX 5" DWS5 8"	Code Code DWS1 1" 51 2" 52 DWSX 5" 53 8" 57	Code Code Code DWS1 1" 51 0.1 μm 2" 52 0.2 μm DWSX 5" 53 0.45 μm DWS5 8" 57	Code Code Code Code 1" 51 0.1 μm 36 2" 52 0.2 μm 01 5" 53 0.45 μm 02 BWS5 57 57 53	Code Code Code Code 1" 51 0.1 μm 36 ¼" SHB 2" 52 0.2 μm 01 ¼" MNPT DWSX 5" 53 0.45 μm 02 ½" MNPT DWS5 8" 57 ½" Sanitary Flange 1½" Sanitary Flange Quick Connector Single Step ½" Hose Barb Female Luer Lock Male Luer Slip %" Hose Barb %" Hose Barb %" Hose Barb %" Hose Barb	Code Code Code Code Code 1" 51 0.1 μm 36 ¼"SHB A 2" 52 0.2 μm 01 ¼"MNPT B DWS1 5" 53 0.45 μm 02 ½"Hose Barb D DWS5 8" 57 53 0.45 μm 02 ½"Sanitary Flange E 3%"Sanitary Flange 5 34"Sanitary Flange S Quick Connector J Single Step ½"Hose Barb Q Female Luer Lock U Male Luer Slip W ¾"G'Hose Barb N ¾"Hose Barb 1	Code Code Code Code Steril 1" 51 0.1 μm 36 ¼"SHB A 2" 52 0.2 μm 01 ¼"MNPT B DWSX 5" 53 0.45 μm 02 ½"MNPT C B" 57 53 0.45 μm 02 ½"MNPT C BWSS 8" 57 1½"Sanitary Flange E 34"Sanitary Flange S Quick Connector J Single Step ½"Hose Barb Q Female Luer Lock U Male Luer Slip W ¾" "Hose Barb N ¾" "Hose Barb N	Code Code Code Code Code Sterilizable 1" 51 0.1 µm 36 1/4" SHB A Yes R DWS1 2" 52 0.2 µm 01 1/4" MNPT B No* X DWS5 5" 53 0.45 µm 02 1/2" MNPT Code No* X DWS5 8" 57 53 0.45 µm 02 1/2" MNPT C No* X DWS5 57 53 0.45 µm 02 1/2" MNPT C No* X DWS5 57 57 53 0.45 µm 02 1/2" MNPT C No* X DWS5 57 57 53 0.45 µm 02 1/2" Sanitary Flange E 3/2" Single Step ½" Hose Barb D Single Step ½" Hose Barb Q Female Luer Lock U Male Luer Slip W 3/6" Hose Barb N 3/2" Hose Barb N 3/2" Hose Barb N	Code Code Code Code Code Code Sterilizable Sterilizable	Code Yes B DWSX 5" 53 0.2 µm 01 1/4" MNPT B No* X No Bell X DWSX 5" 53 0.45 µm 02 1/2" Hose Barb D No* X DWS5 57 57 57 1/2" Sanitary Flange E 3/4" Sanitary Flange E 1/2" Sanitary Flange 5 Quick Connector J Single Step ½" Hose Barb Q Female Luer Lock U Male Luer Slip W 3/4" Hose Barb N 3/4" Hose Barb N 3/4" Hose Barb N 3/4" Hose Barb N	Code Code Code Code Code Code Sterilizable Sterilizable No sterile DWS1 1" 51 0.1 µm 36 ¼"SHB A DWS1 0.2 µm 01 ¼"MNPT B 5" 53 0.45 µm 02 ½"Hose Barb D 1½"Sanitary Flange E ¾"Sanitary Flange S Quick Connector J Single Step ½"Hose Barb Q Female Luer Lock U Male Luer Slip W ¾"Hose Barb N ¾"Single Step ½"Hose Barb Q %"Hose Barb N ¾"Single Step ½"Hose Barb N %"Hose Barb N ¾"Single Step ½"Hose Barb N ¾"Hose Barb N ¾"Single Step ½"Hose Barb N ¾"Hose Barb N ¾"Hose Barb N ¾"Hose Barb N ¾"Hose Barb N	Code R No Sterillizable No Sterillizable	Code Sterilizable Code Code R Code R Code R

*Gamma Sterile filters cannot be Gamma Irradiated again

Example for Non Sterile: DWSX5136DDRX101 Example for Gamma Sterile: DWSX5136DDXX301

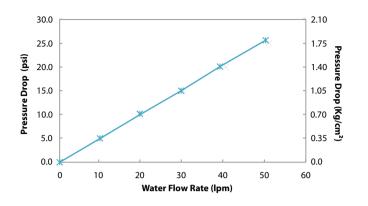
For End Connection, bell availability and dimensions with different sizes refer Pages 89-90.

AseptiCap WS Large Capsule Filters (5", 10", 20", 30")

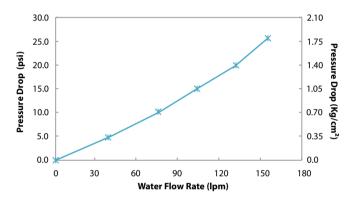
mdi AseptiCap WS are low protein binding hydrophilic PVDF membrane capsule filters offering serial filtration incorporating a larger pore size upstream membrane to protect the downstream membrane for enhanced throughput.

These capsule filters are validated to meet compendia and regulatory requirements and are well characterized. They meet key process requirements such as absolute retention efficiency, extremely low extractables, high throughputs, wide chemical compatibility and other important characteristics.

Radiation Sterilizable	:	AseptiCap WS -γ
Autoclalvable	:	AseptiCap WS



Construction					
Membrane		Hydrophilic PVDF			
Support (Drainage) Layers		Polyester			
Plastic Parts		Polypropylene			
Final Filter Pore Size		0.1 µm	0.2 μm	0.45 μm	
Prefilter Pore Size		0.2 μm, 0.45 μm	0.8 μm and 0.45 μm	0.8 μm	
		Integrity Test	ing/Retention		
Bubble Point		\geq 28 psi (1.96 Kg/cm ²) with 50% IPA \geq 70 psi (4.92 Kg/cm ²) with Water	\geq 50 psi (3.52 Kg/cm ²) with Water	\geq 30 psi (2.11 Kg/cm ²) with Water	
Max. Air Diffusion Flow for 10" Capsule Filters		\leq 30 ml/min @ 50 psi (3.52 Kg/cm ²) with Water	\leq 30 ml/min @ 37 psi (2.6 Kg/cm with Water	n^2) \leq 30 ml/min @ 22 psi (1.54 Kg/cm ²) with Water	
Microbial Retention		LRV >7 for <i>Acholeplasma laidlawii</i> (ATCC 23206) per cm ²	LRV >7 for <i>Brevundimonas dimin</i> (ATCC 19146) per cm ²	uta LRV >7 for Serratia marcescens (ATCC 14756) per cm ²	
		Si	ze		
Size		5″	10″ 2	0″ 30″	
Effective Filtration Area (Nominal)		3000 cm ²	6000 cm ² 1200	18000 cm ²	
Vent and Drain		1/4" Hose Barb with platinum cured Silicone 'O' ring			
		Opera	tional		
Max. Operating Temperature		80 °C @ ≤ 30 psi (2 Kg/cm²)			
Max. Differential Pressure		60 psi (4 Kg/cm²) @ 30 °C			
Sterilization	By Irradiation	AseptiCap WS - γ: Gamma Irradiatable up to 50 kGy. These filters should not be autoclaved or in-line steam sterilized.			
	By Gas	AseptiCap WS: Sterilizable by Ethylene Oxide			
	By Autoclave	AseptiCap WS: Autoclavable at 125°C for 30 minutes, 2 cycles These cannot be In-line steam sterilized			
2 years after damma sterilization				n	
Shelf Life		:	3 years after Ethylene Oxide steriliz		


Water Flow Rates

0.2 µm AseptiCap WS, 5" Large Capsule Filters

0.2 µm AseptiCap WS, 10" Large Capsule Filters

End Connection Type: E: 11/2" Sanitary Flange

Ordering Information

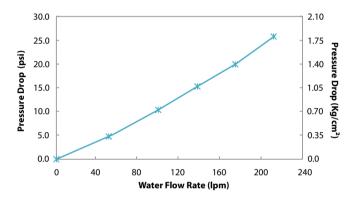
AseptiCap WS and AseptiCap WS- γ

Туре		Si	ze	Pore	Size	Inlet/Outlet Radiation Inline Sterility		Radiation Sterilizable				ty	Pack	c Size	
	Code		Code		Code		Code	Stern		/ 1-1			Code		Code
AseptiCap WS (0.2 μm Upstream)	LWS1	5″*	53	0.1 µm	36	1½" Sanitary Flange	E	Yes	Code R	Inline	Code X	Non Sterile	1	1	01
AsentiCan W/S		10″	54	0.2 µm		Single Step ½"	0	No	Х	T-line**		EO Sterile	2		
(0.45 µm Upstream)	LWSX	20″	55	0.45 μm	02	Hose Barb	Q		~			Gamma	3		
AseptiCap WS	LWS5	30″	56			¾" Sanitary Flange	S					Sterile	5		
(0.8 µm Upstream)						3/8" Hose Barb	I.								
						1" Hose Barb	Z								

Example:

LWSX 54	01	EE	R	т	1	01
---------	----	----	---	---	---	----

* Size 5" is available in In-line Capsule Filters Only


** T-line Capsule Filters are available with $1^{\prime}\!/_{\!2}{}''$ Sanitary Flange connections Only

Note: Gamma Sterile filters cannot be Gamma Irradiated again

Example for Non Sterile: LWSX5402EERX101 Example for Gamma Sterile: LWSX5402EEXX301

30.0 2.10 25.0 1.75 Pressure Drop (Kg/cm²) Pressure Drop (psi) 20.0 1.40 15.0 1.05 10.0 0.70 5.0 0.35 0.0 0.0 0 15 45 60 75 90 30 Water Flow Rate (lpm)

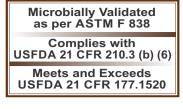
0.2 µm AseptiCap WS, 30" Large Capsule Filters

AseptiSure WS Mini Cartridge filters

AseptiSure WS are low protein binding hydrophilic PVDF membrane mini cartridge filters offering serial filtration incorporating a large pore size upstream membrane to protect the downstream membrane for enhanced throughput.

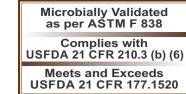
These cartridge filters are validated to meet compendia and regulatory requirements and are well characterized. They meet key process requirements such as absolute retention efficiency, extremely low extractables, high throughputs, wide chemical compatibility and other important characteristics.

Specifications


	Con	struction	
Membrane		Hydrophilic PVDF	
Support (Drainage) Layers		Polyester	
Plastic Parts		Polypropylene	
Final Filter Pore Size	0.1 μm	0.2 μm	0.45 μm
Prefilter Pore Size	0.2 μm, 0.45 μm	0.8 μm and 0.45 μm	0.8 µm
	Integrity Te	esting/Retention	
Bubble Point	\geq 28 psi (1.96 Kg/cm ²) with 50% IPA \geq 70 psi (4.92 Kg/cm ²) with Water	> 50psi (3.52Kg/cm²) with Water	> 30psi (2.11Kg/cm²) with Water
Microbial Retention	LRV >7 for <i>Acholeplasma laidlawii</i> (ATCC 23206) per cm ²	LRV >7 for <i>Brevundimonas diminuta</i> (ATCC 19146) per cm ²	LRV >7 for <i>Serratia marcescens</i> (ATCC 14756) per cm ²
		Size	
Size	2.5″		5″
Effective Filtration Area (Nominal)	1000 cm ²		2000 cm ²
	Ор	erational	
Typical Water Flow Rate for 0.2μm @ 0.70kg/cm² @27°C	7.0 lpm		15.7 lpm
Max. Operating Temperature		80 °C @ <u><</u> 2 Kg/cm² (30 psi)	
Max. Differential Pressure		50 psi (3.5 Kg/cm²) @ 25 °C	
Reverse Pressure		<u><</u> 10 psi (0.7 Kg/cm²) @ 25 °C	
Sterilization	In-line steam sterilizable upto 135 °C	for 30 minutes at a maximum different	tial pressure of 5 psi (0.35 Kg/cm²), 3 cycl

Ordering Information

Туре		Si	ize	Pore	Size	Ada	pter	Elastomer		Sterility		Sterility Pack S	
	Code		Code		Code		Code		Code		Code		Code
AseptiSure WS	CWH1	2.5″	50	0.1 μm	36	4463	E0	Silicone	SS	Non Sterile	1	1	01
(0.2 μm Upstream)		5″	53	0.2 µm	01	4463B	H0		·				
<i>AseptiSure WS</i> (0.45 μm Upstream)	CWHX			0.45 μm	02	4440	UO	*G0 adapter is not available with elastomer. Please mentio XX in place of elastomer code while ordering					
AseptiSure WS	CWH5					Seal-K	G0*						ention
(0.8 μm Upstream)	CWIIJ					Seal-O	F0						
						Seal-M	٦O						


Example:

CWHX 50 01 E0 SS 1 0
--

AseptiSure WS Standard Cartridge Filters

AseptiSure WS are low protein binding hydrophilic PVDF membrane cartridge filters offering serial filtration incorporating a large pore size upstream membrane to protect the downstream membrane for enhanced throughput.

Specifications

	Con	struction								
Membrane		Hyd	drophilic PVDF							
Support (Drainage) Layers			Polyester							
Plastic Parts		Polypropylene								
Final Filter Pore Size	0.1 μm	0.45 µm								
Prefilter Pore Size	0.2 μm, 0.45 μm	0.8 μm								
	Integrity Te	esting/Retenti	ion							
Bubble Point	\geq 28 psi (1.96 Kg/cm²) with 50% IPA \geq 70 psi (4.92 Kg/cm²) with Water	\geq 50 psi (3.52 Kg/cm ²) with Water		\geq 30 psi (2.11 Kg/cm ²) with Water						
Air Diffusion Flow (10" Cartridge Filter)	\leq 30 ml/min @ 50 psi (3.52 Kg/cm ²) with Water	\leq 30 ml/min @ 37 psi (2.6 Kg/cm ²) with Water		\leq 30 ml/min @ 22 psi (1.54 Kg/cm ²) with Water						
Microbial Retention	LRV >7 for Acholeplasma laidlawii (ATCC 23206) per cm ²	LRV >7 for <i>Brevundimonas diminuta</i> (ATCC 19146) per cm ²		LRV >7 for Serratia marcescens (ATCC 14756) per cm ²						
		Size								
Size	5″	10″	20″	30″						
Effective Filtration Area (Nominal)	3000 cm ²	6000 cm ²	12000 cm ²	18000 cm ²						
	Ope	erational								
Typical Water Flow Rates (for 0.2µm @ 0.70 Kg/cm² @ 27 °C)	18 lpm	33 lpm	60 lpm	84 lpm						
Max. Operating Temperature		80 °C @	≤ 30psi (2 Kg/cm²)							
Max. Differential Pressure		50 psi (3	3.5 Kg/cm²) @ 25 °C							
Reverse Pressure		<u><</u> 10 psi ((0.7 Kg/cm²) @ 25 °C							
Sterilization	In-line steam sterilizable upto 135 °C	for 30 minutes	at a maximum differentia	al pressure of 5 psi (0.35 Kg/cm²), 3 cy						

Ordering Information

Туре		Si	ze	Pore	Size	Adapte	er	Elaston	ner	Sterili	ty	Pack	c Size
	Code		Code		Code		Code		Code		Code		Code
AseptiSure WS	CWH1	5″	53	0.1 μm	36	7P	A0	Silicone	SS	Non Sterile	1	1	01
(0.2 μm Upstream)	-	10″	54	0.2 μm	01	7P without fin	A1	Viton	SV				
AseptiSure WS (0.45 μm Upstream)	CWHX	20″	55	0.45 μm	02	28 with fin	C0	EPDM	SE				
AseptiSure WS (0.8 μm Upstream)	CWH5	30″	56			ʻOʻ	D0	FEP Encapsulated Viton	FV				

Example:

CWHX 54 01	A0	SS	1	01
------------	----	----	---	----

Filters for Sterilization of Liquids: Nylon 66 Membrane Filters

mdi Nylon 66 membrane filters are sterilizing grade filters offering absolute retention and wide chemical compatibility.

mdi Nylon 66 filter devices are available as:

Filter Type	Single Layer	Multiple Layer
Capsule Filters	AseptiCap NL	AseptiCap NS
Cartridge Filters	-	AseptiSure NS
Membrane Disc Filters	-	NN

Applications

- > Sterilization of compatible solvents and chemicals
- Sterilization of disinfectants in pharmaceutical process and lab areas
- > Filtration of hospital disinfectants
- Filtration of rinse water for endoscopes and other hospital equipment and surfaces
- Sterilizing filtration in pharmaceutical for aqueous and non aqueous solutions

Quality Assurance

These filter devices are manufactured in Class 10,000 clean rooms under ISO 9001:2015 certified quality management systems and are validated to meet compendia and regulatory requirements.

	Assurance
Toxicity	Passes Bioreactivity test, In Vivo, as per USP <88> for Class VI plastics
Bioburden	Bioburden level is < 1000 cfu/filter device as per ISO 11737-1: 2018
Bacterial Endotoxin	Aqueous extracts exhibit < 0.25 EU/ml as established by Limulus Amebocyte Lysate (LAL) Test as per USP <85>
Non Fiber Releasing	Passes test as per USP and comply with USFDA 21 CFR Part 210.3 (b)(6) for fiber release
Extractables with WFI	Passes test as per USP <661>
Oxidizable Substances	Within limits as specified in USP <1231>
Particle Shedding	Passes test as per USP <788> for particulate matter in injections
TOC/Conductivity at 25 °C	Meets the WFI requirements of USP <643> for Total Organic Carbon and USP <645> for Water Conductivity after a specified volume of purified water flush
Indirect Food Additive	All Polypropylene components meet the FDA Indirect Food Additive requirements cited in 21 CFR 177.1520
Good Manufacturing Practice	These products are manufactured in a facility which adheres to Good Manufacturing Practices

Filter Selection Chart


Application Area	Key Application Requirements	Capsule Filters	Cartridge Filters	Disc Filters
Sterilization of compatible solvents and chemicals	 Absolute retention Wide chemical compatibility 	AseptiCap NL/NS 0.2 µm Nylon 66 Membrane Capsule Filter	AseptiSure NS 0.2 μm Nylon 66 Membrane Cartridge Filter	0.2 µm Nylon 66 Membrane Disc Filters
Sterilization of disinfectants in pharmaceutical labs and process areas	- Absolute retention - Wide chemical compatibility	AseptiCap NL/NS 0.2 µm Nylon 66 Membrane Capsule Filter	AseptiSure NS 0.2 μm Nylon 66 Membrane Cartridge Filter	0.2 μm Nylon 66 Membrane Disc Filters
Filtration of hospital disinfectants	- Absolute retention - Wide chemical compatibility	AseptiCap NL/NS 0.2 μm Nylon 66 Membrane Capsule Filter	AseptiSure NS 0.2 μm Nylon 66 Membrane Cartridge Filter	0.2 µm Nylon 66 Membrane Disc Filters
Filtration of rinse water for endoscopes and other hospital equipments	- Absolute retention	AseptiCap NL/NS 0.2 μm Nylon 66 Membrane Capsule Filter	AseptiSure NS 0.2 μm Nylon 66 Membrane Cartridge Filter	-
Sterilizing filtration of aqueous and non aqueous solutions	- Absolute retention - Wide chemical compatibility	AseptiCap NL/NS 0.2 µm Nylon 66 Membrane Capsule Filter	AseptiSure NS 0.2 μm Nylon 66 Membrane Cartridge Filter	0.2 µm Nylon 66 Membrane Disc Filters

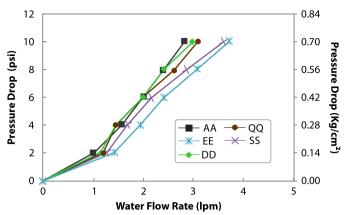
AseptiCap NL/NS Small Capsule Filters (1", 2", 5", 8")

AseptiCap NL/NS Nylon 66 membranes capsule filters are sterilizing grade filters offering absolute retention, wide chemical compatibility, and very low hold up volumes.

Single Layered: **Multiple Layered:** AseptiCap NL AseptiCap NS

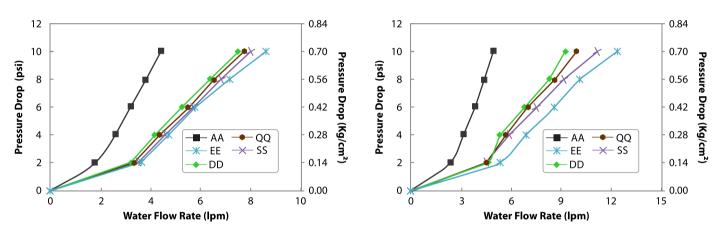
Microbially Validated as per ASTM F 838 Complies with USFDA 21 CFR 210 (b) (6)

Meets and Exceeds USFDA 21 CFR 177.1520


Construction								
Membrane			Nylon	66				
Support (Drainage) Layers			Polyes	ter				
Plastic Parts			Polyprop	ylene				
Final Filter Pore Size		C).2 μm	0.4	5 µm			
Prefilter Pore Size (In case of <i>AseptiCap NS</i>)		0.8 μm, 0.45 μm 0.8 μm						
		Integrity Testing/	Retention					
Bubble Point (with water)		≥ 50 psi (3	3.52 Kg/cm²)	\geq 30 psi (2.1 Kg/cm ²)				
Microbial Retention (LRV >7 for)			onas diminuta 46) per cm²	Serratia m (ATCC 1475				
		Size						
Size		1″	2″	5″	8″			
Effective Filtration Area (Nominal)	AseptiCap NL	250 cm ²	900 cm ²	1800 cm ²	2700 cm ²			
	AseptiCap NS	200 cm ²	700 cm ²	1400 cm ²	2100 cm ²			
Vent and Drain			¼" Hose Barb wit	h Silicone 'O' ring				
		Operation	nal					
Max. Operating Temperature			80 °C @ ≤ 2 Kg/	cm² (30 psi)				
Max. Differential Pressure			4 Kg/cm² (60 p	si)@30°C				
	By Gas		Sterilizable by Et	hylene Oxide				
Sterilization	By Autoclave		Autoclavable at 125 Cannot be In-line s					

Water Flow Rates

0.2µm AseptiCap NS, 1" Capsule Filter

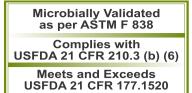


0.2µm AseptiCap NS, 2" Capsule Filter

0.2µm AseptiCap NS, 8" Capsule Filter

End Connection Type:

A: ¼" Stepped Hose Barb Q: Single Step ½" Hose Barb

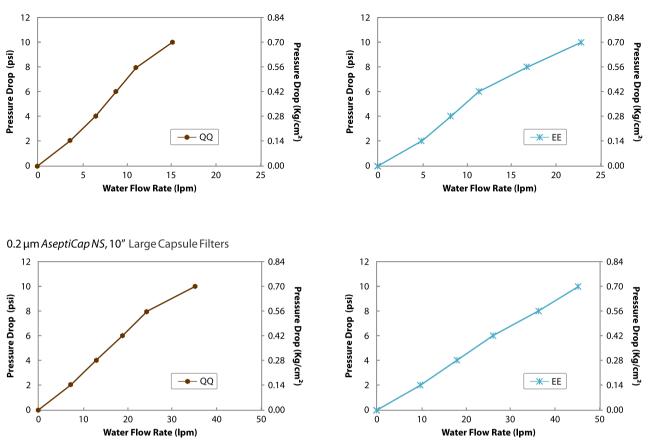

E: 1¹/₂" Sanitary Flange S: ³/₄" Sanitary Flange D: ¹/₂" Hose Barb

Ordering Information

Туре		Si	ze	Pore	Size	Inlet/Outlet		х	Be	11	Sterili	ty	Pack	c Size
	Code		Code		Code		Code			Code		Code		Code
AseptiCap NL	DNLX	1″	51	0.2 μm	01	1⁄4″ SHB	А		Yes	В	Non Sterile	1	1	01
AseptiCap NS	DNSX	2″	52	0.45 μm	02	1⁄4″ MNPT	В		No Bell	Х	EO Sterile	2		
(0.45 µm Upstream)		5″	53			½″MNPT	С							
<i>AseptiCap NS</i> (0.8 μm Upstream)	DNS5	8″	57			½″ Hose Barb	D							
(0.0 µm opstream)						1½" Sanitary Flange	E							
						¾" Sanitary Flange	S							
						Quick Connector	J							
						Single Step ½" Hose Barb	Q							
						Female Luer Lock	U							
						Male Luer Slip	W							
						¾6″ Hose Barb	N							
Example:						¾" Hose Barb	I							
DNSX		5	52	0	1	DD		x	х		1		0	1

AseptiCap NS Large Capsule Filters (5", 10", 20", 30")

AseptiCap NS Nylon 66 large membranes capsule filters are double layered sterilizing grade filters offering absolute retention, wide chemical compatibility, and serial filtration for enhanced throughputs.



HIGH LEAST IN

		Constructi	on			
Membrane			Nylon	66		
Support (Drainage) Layers			Polyes	ter		
Plastic Parts			Polyprop	ylene		
Final Filter Pore Size		0.2	! μm	0.45 μm		
Prefilter Pore Size		0.8 μm,	0.45 μm	0.	8 µm	
		Integrity Testing/	Retention			
Bubble Point (with water)		<u>≥</u> 50 psi (3	.52 Kg/cm²)	≥ 30 psi (2.1 Kg/cm²)		
Air Diffusion Flow for10" Cap	osule Filters (with water)	≤ 30 ml/min @ 33	7 psi (2.60 kg/cm²)	\leq 30 ml/min @ 22 psi (1.54 kg/cm ²)		
Microbial Retention (LRV >7	for)	Brevundimonas diminut	<i>ta</i> (ATCC 19146) per cm ²	Serratia marcescens	(ATCC 14756) per cm ²	
		Size				
Size		5″	10″	20″	30″	
Effective Filtration Area (Nor	ninal)	3000 cm ²	6000 cm ²	12000 cm ²	18000 cm ²	
Vent and Drain			1⁄4" Hose Barb with	Silicone 'O' ring		
		Operation	al			
Max. Operating Temperature	2		80 °C @ ≤ 30 ps	i (2 Kg/cm²)		
Max. Differential Pressure			60 psi (4 Kg/cr	n²) @ 30 °C		
By Gas			Sterilizable by Et	hylene Oxide		
Sterilization	By Autoclave	Autoclavab	le at 125 °C for 30 minutes.	Cannot be In-line stear	n sterilized.	

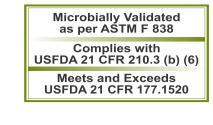
Water Flow Rates

0.2 µm AseptiCap NS, 5" Large Capsule Filters

End Connection Type: Q: Single Step ½" Hose Barb **E**: 1½" Sanitary Flange

Ordering Information

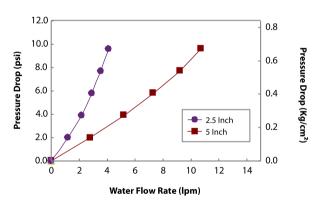
Туре		Si	ze	Pore	Size	Inlet/Outlet		x	Inline / T-line		Sterility		Pack Size	
	Code		Code		Code		Code			Code		Code		Code
<i>AseptiCap NS</i> (0.45 μm Upstream)	LNSX	5″*	53	0.2 μm	01	1½" Sanitary Flange	E		Inline	х	Non Sterile	1	1	01
		10″	54	0.45 μm	02	Single Step ½" Hose Barb	Q		T-line	т	EO Sterile	2		·
<i>AseptiCap NS</i> (0.8 μm Upstream)	LNS5	20″ 30″	55 56			³ 4″ Sanitary Flange	S							
		50	50			¾″ Hose Barb	I							
						1" Hose Barb	Z							
Example:														
LNSX		5	4	01		QQ		x	т		1		0	1


* Size 5" is available in In-line Capsule Filters Only

AseptSure NS Mini Cartridge filters

mdi AseptiSure NS Nylon 66 membrane mini cartridge filters are sterilizing grade filters offering absolute retention and wide chemical compatibility. These filters offer serial filtration for enhanced throughput. The upstream layer is of larger pore size to protect the downstream final filtration layer.

Specifications


	Construction	
Membrane	Nylor	n 66
Support (Drainage) Laye	ers Polye	ster
Plastic Parts	Polyproj	oylene
Final Filter Pore Size	0.2 µm	0.45 μm
Prefilter Pore Size	0.8 μm, 0.45 μm	0.8 μm
In	tegrity Testing/Retenti	on
Bubble Point (with water)	≥ 50 psi (3.52 Kg/cm²)	≥ 30 psi (2.1 Kg/cm²)
Microbial Retention (LRV >7 for)	<i>Brevundimonas diminuta</i> (ATCC 19146) per cm ²	<i>Serratia marcescens</i> (ATCC 14756) per cm ²
	Size	
Size	2.5″	5″
Effective Filtration Area (Nominal)	1000 cm ²	2000 cm ²
	Operational	
Max. Operating Temperature	80 °C @ <u><</u> 2 Kg	/cm² (30 psi)
Max. Differential Pressure	< 3.5Kg/cm ² (5	0 psi) @ 25°C
Reverse Pressure	< 0.7 Kg/cm ² (1	0 psi) @ 25 °C
Sterilization	Autoclavable/In-line Stea for 30 minutes @ a maxim of 3psi (0.2	um differential pressure

Water Flow Rates

0.2µm AseptiSure NS Mini Cartridge Filters

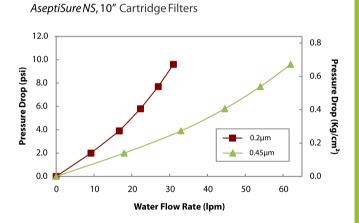
Ordering Information

Туре		Si	ze	Pore	Size	Adap	ter	Elastom	Elastomer Sterility Pa		Pacl	k Size	
	Code		Code		Code		Code		Code		Code		Code
AseptiSure NS	CPNX	2.5″	50	0.2 μm	01	4463	EO	Silicone	SS	Non Sterile	1	1	01
(0.45 µm Upstream)	CITIX	5″	53	0.45 µm	02	4463B	H0						
AseptiSure NS (0.8 µm Upstream)	CPN5					4440	UO						
(0.8 µm opstream)						Seal-K	G0*	*G0 adapter is	not availab	le with elasto	mer. Ple	ase mei	ntion
						Seal-O	F0	XX in place of elastomer code while ordering					
Example:						Seal-M	JO						
CPNX		5	0	01		EO		SS		1		0)1

AseptiSure NS Standard Cartridge Filters

AseptiSure NS Nylon 66 membrane cartridge filters are sterilizing grade filters offering absolute retention and wide chemical compatibility. These filters offer serial filtration for enhanced throughput. The upstream layer is of larger pore size to protect the downstream final filtration layer.

Specifications


	Consti	ruction				
Membrane		Nylo	n 66			
Support (Drainage) Laye	ers	Polye	ester			
Plastic Parts		Polypro	pylene			
Final Filter Pore Size	0.2	μm	0.45	μm		
Prefilter Pore Size	0.8 μm, 0.45 μm 0.8 μm					
In	tegrity Test	ing/Retent	ion			
Air Diffusion Flow (with water wetted) (10" Cartridge Filter)	<u>≤</u> 30 ml/m (2.60 k	<u>≤</u> 30 ml/m (1.54 k	in @ 22 psi g/cm²)			
Microbial Retention (LRV >7 for)		n <i>as diminuta</i> 16) per cm²	<i>Serratia marcescens</i> (ATCC 14756) per cm ²			
	Si	ze				
Size	5″	10″	20″	30″		
Effective Filtration Area (Nominal)	3000 cm ²	6000 cm ²	12000 cm ²	18000 cm ²		
	Opera	ntional				
Max. Operating Temperature	٤	30 °C @ <u><</u> 30 p	osi (2 Kg/cm²)			
Max. Differential Pressure	50 psi (3.5Kg/cm²) @ 25°C					
Reverse Pressure	<	10 psi (0.7 Kg	ı/cm²) @ 25 °(2		
Sterilization	at 121 °C for	avable/In-line 30 minutes @ essure of 3ps	🦻 a maximum	differential		

Microbially Validated as per ASTM F 838

Complies with USFDA 21 CFR 210.3 (b) (6)

Meets and Exceeds USFDA 21 CFR 177.1520

Water Flow Rates

Ordering Information

Туре		Si	ze	Pore	Size	Adapter		Elastomer		Sterili	Sterility		Pack Size	
	Code		Code		Code		Code		Code		Code		Code	
AseptiSure NS	CPNX	5″	53	0.2 μm	01	7P	A0	Silicone	SS	Non Sterile	1	1	01	
(0.45 μm Upstream)	CITIX	10″	54	0.45 μm	02	7P without fin	A1	Viton	SV		·			
AseptiSure NS	CPN5	20″	55			28 with Fin	C0	EPDM	SE					
(0.8 µm Upstream)		30″	56			'O'	D0	FEP						
								Encapsulated Viton	FV					

Example:

СРМХ	54	01	A0	SS	1	01
------	----	----	----	----	---	----

Nylon 66 Membrane Disc Filters - Type NN

Microbially Validated as per ASTM F 838 Complies with USFDA 21 CFR 210.3 (b) (6)

NN membrane disc filters are double layered, hydrophilic, non-media migrating, biologically inert, plain white absolute membrane filters offering wide chemical compatibility.

Specifications

			Construction					
Membrane			Nylo	on 66				
Pore Size			0.2 μm, 0.45 μm	n, 0.8 μm, 1.2 μm				
Size			90 mm, 142	mm, 293 mm				
		Integi	ity Testing/Retention					
Bubble Point	0.2 μm		\geq 50 psi (3.51 Kg/cm ²) with water					
(with Water)	0.45 μm	\geq 32 psi (2.25 Kg/cm ²) with water						
Microbial	0.2 μm	LRV> 7 for Brevundimonas diminuta						
Retention	0.45 μm		LRV> 7 for Serr	ratia marcescens				
			Operational					
Max. Operating Te	mperature		80 °C co	ntinuous				
Max. Differential P	ressure		5 Kg	J/cm²				
Water Flow Rates		0.2 μm	0.45 μm	0.8 µm	1.2 μm			
(27 °C @ 0.70 Kg/cm ²)	14 ml/min/cm ²	37 ml/min/cm ²	120 ml/min/cm ²	180 ml/min/cm ²				
Sterilization		Autoclavable at 121 °C for 30 minutes						

Ordering Information

Ту	pe	Size		Pore Size		ХХ	хх	Sterili	ty	Pack	Size
	Code		Code		Code				Code		Code
NN	NNXX	90 mm	14	0.2 μm	01			Non Sterile	1	50	03
		142 mm	16	0.45 μm	02						
		293 mm	19	0.8 µm	03						
		I		1.2 μm	10						
Example:											
•	•	•		•		•	•	•		`	•
N	VXX	14		01		ХХ	ХХ	1		0	3

Filters for Sterilization of Air/Gases

PVDF Membrane Filter Devices

mdi Gamma Sterilizable *AseptiVent VF-* γ are hydrophobic PVDF membrane single use capsule filters with a wide range of end connections and different sizes for linear scalability to use with disposable single use assemblies for biopharmaceutical processes.

These filters are validated for microbial retention with liquid bacterial challenge test as per ASTM F838 to ensure reliable performance under worst case conditions.

PTFE Membrane Filter Devices

mdi produces a wide range of PTFE membrane capsule and cartridge filters to meet filtration requirements of biopharmaceutical and pharmaceutical processing.

These filters are validated for microbial retention with liquid bacterial challenge test as per ASTM F838 to provide a high degree of sterility assurance for critical applications such as bioreactor/fermentor venting etc. As they offer wide chemical compatibility with organic solvents, these are ideal for manufacture of sterile API.

Gamma Sterilizable
Capsule FiltersAseptiVent VF-γ-Autoclavable Capsule Filters-AseptiVent TFSteam Sterilizable
Cartridge Filters-AseptiSure TFHigh Temperature
Resistant Steam Sterilizable
Cartridge Filters-AseptiSure TH

Single Use

Multiple Use

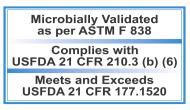
Applications

Filter Type

- > Sterile air sparging in fermentors and bioreactors
- Sterile venting of cell factories, bioreactors and fermentors
- Fermentor exhaust
- > Sterilization of environmental air in isolators
- Venting of sterile collection vessels
- Cleaning sterile surfaces
- WFI tank venting
- > Nitrogen blanketing
- > Sterile filtration of API and solvents
- Dry powder injectable filling
- Sterile air for dryers and micronizers

	Assurance
Toxicity	Passes Bioreactivity test, In Vivo, as per USP <88> for Class VI plastics
Bioburden	Bioburden level is < 1000 cfu/filter device as per ISO 11737-1: 2018
Bacterial Endotoxin	Aqueous extracts exhibit < 0.5 EU/ml as established by Limulus Amebocyte Lysate (LAL) Test as per USP <85>
Non Fiber Releasing	Passes test as per USP and comply with USFDA 21 CFR Part 210.3 (b)(6) for fiber release
Oxidizable Substances	Within limits as specified in USP <1231>
Particle Shedding	Passes test as per USP <788> for particulate matter in injections
Indirect Food Additive	All Polypropylene components meet the FDA Indirect Food Additive requirements cited in 21 CFR 177.1520
Good Manufacturing Practice	These products are manufactured in a facility which adheres to Good Manufacturing Practices

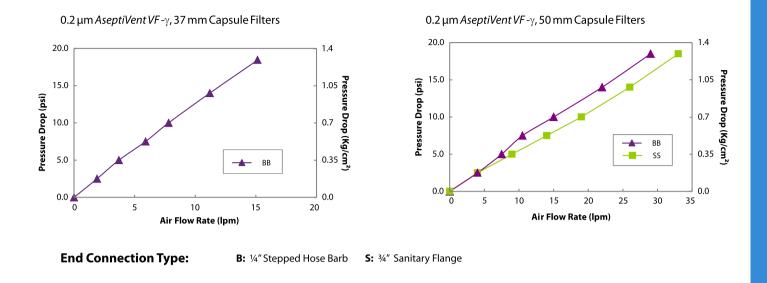
Quality Assurance

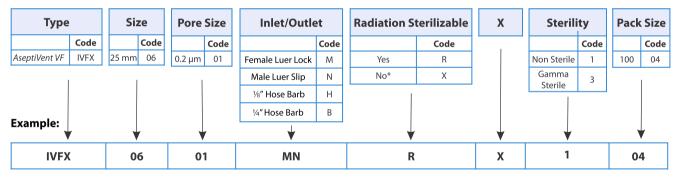

These filter devices are manufactured in Class 10,000 clean rooms under ISO 9001: 2015 certified quality management systems and are validated to meet compendia and regulatory requirements.

Filter Selection Chart

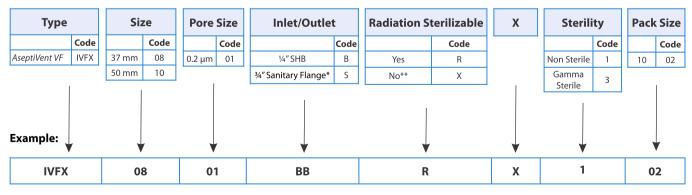
Application	Key Application	Gamma Sterilizable	Steam Ste	erilizable
Area	Requirements	Capsule Filters	Capsule Filters	Cartridge Filters
Sterile venting for fermentors and bioreactors	 Absolute retention High hydrophobicity High flow rates 	AseptiVent VF- γ 0.2 μm PVDF Membrane Capsule Filters	AseptiVent TF 0.2 μm PTFE Membrane Capsule Filter	AseptiSure TF/TH 0.2 μm PTFE Membrane Cartridge Filter
Sterile air sparging in fermentors and bioreactors	 Absolute retention High hydrophobicity High flow rates 	AseptiVent VF- γ 0.2 μm PVDF Membrane Capsule Filters	AseptiVent TF 0.2 μm PTFE Membrane Capsule Filter	AseptiSure TF/TH 0.2 μm PTFE Membrane Cartridge Filter
Sterile air for cell factories	- Absolute retention - High hydrophobicity	AseptiVent VF- γ 0.2μm PVDF Membrane Capsule Filters	AseptiVent TF 0.2 μm PTFE Membrane Capsule Filter	-
Venting of small bioreactors	- Absolute retention - High hydrophobicity	AseptiVent VF- γ 0.2 μm PVDF Membrane Capsule Filters	AseptiVent TF 0.2 μm PTFE Membrane Capsule Filter	-
Fermentor exhaust	- Absolute retention - High hydrophobicity - High flow rates	_	AseptiVent TF 0.2 μm PTFE Membrane Capsule Filter	AseptiSure TF/TH 0.2 μm PTFE Membrane Cartridge Filter
Venting of sterile collection vessels	 Absolute retention High hydrophobicity High flow rates 	AseptiVent VF- γ 0.2 μm PVDF Membrane Capsule Filters	AseptiVent TF 0.2 μm PTFE Membrane Capsule Filter	AseptiSure TF/TH 0.2 μm PTFE Membrane Cartridge Filter
Nitrogen blanketing in sterile API	- Absolute retention - High flow rates	-	AseptiVent TF 0.2 μm PTFE Membrane Capsule Filter	AseptiSure TF/TH 0.2 μm PTFE Membrane Cartridge Filter
Cleaning sterile surfaces	- Absolute retention - High flow rates	_	AseptiVent TF 0.2 μm PTFE Membrane Capsule Filter	AseptiSure TF/TH 0.2 μm PTFE Membrane Cartridge Filter
Dry powder injectable filling	- Absolute retention - High flow rates	-	AseptiVent TF 0.2 μm PTFE Membrane Capsule Filter	AseptiSure TF/TH 0.2 μm PTFE Membrane Cartridge Filter
WFI tank venting	 Absolute retention High hydrophobicity High flow rates 	_	-	AseptiSure TF/TH 0.2 μm PTFE Membrane Cartridge Filter
Sterile filtration of API/Solvents	 Absolute retention High flow rates 	_	-	AseptiSure TF/TH 0.2 μm PTFE Membrane Cartridge Filter
Sterile air for dryers and micronizers	 Absolute retention High flow rates 	-	AseptiVent TF 0.2 μm PTFE Membrane Capsule Filter	AseptiSure TF/TH 0.2 μm PTFE Membrane Cartridge Filter

*AseptiVent VF-*γ Inline Capsule Filters (25mm, 37mm, 50mm)


 $0.2 \,\mu m$ **AseptiVent VF**- γ , Gamma Sterilizable PVDF membrane vent filters are validated for microbial retention with liquid bacterial challenge test as per ASTM F838 to provide a high degree of sterility assurance for critical applications such as small bioreactors, sterile tank venting, bottle venting, barrier filter for vacuum pump etc.


	Constru	uction	
Final Filter Pore Size		0.2 μm	
Membrane		Hydrophobic PVDF	
Plastic Parts		Polypropylene	
	Integrity Testi	ng/Retention	
Bubble Point	≥ 18	psi (1.27 Kg/cm²) with 50% IPA/ Water S	Solution
Microbial Retention	LRV >7 f	or Brevundimonas diminuta (ATCC 1914	46) per cm²
	Siz	ze	
Size	25 mm	37 mm	50 mm
Effective Filtration Area (Nominal)	5 cm ²	10 cm ²	20 cm ²
	Operat	tional	
Max. Operating Temperature		60 °C	
Max. Differential Pressure		1.5 Kg/cm² (21 psi) @ 30° C	
Burst Pressure	> 14 Kg/cm ²	> 8 Kg/cm ²	> 8 Kg/cm ²
Sterilization By Irradiation	Gamma Irradiatable up to 50	kGy. These filters should not be autoc	laved or in-line steam sterilized.
Shelf Life		2 years after Gamma Sterilization	

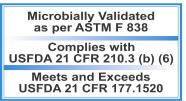
Air Flow Rates


Ordering Information

AseptiVent VF - γ , 25 mm

*Gamma Sterile filters cannot be Gamma Irradiated again

AseptiVent VF -γ, 37 mm and 50 mm

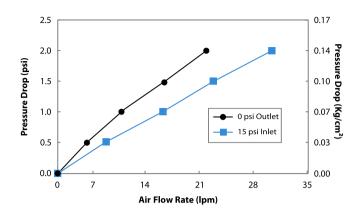


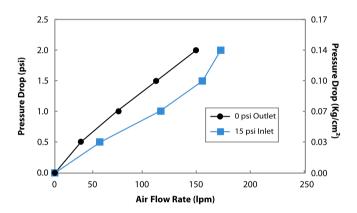
*¾" Sanitary Flange connection is available only in 50 mm filter

**Gamma Sterile filters cannot be Gamma Irradiated again

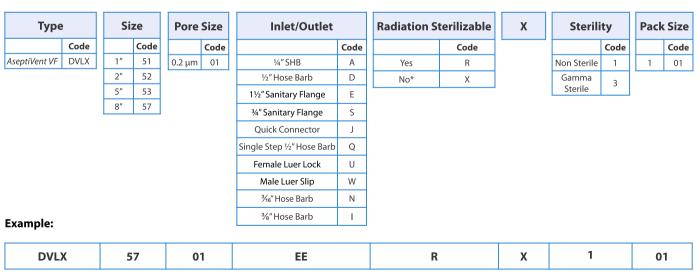
*AseptiVent VF-*γ Small Capsule Filters (1", 2", 5", 8")

AseptiVent VF-γ PVDF membrane vent capsule filters are validated for Microbial Retention with liquid bacterial challenge test as per ASTM F838 to provide a high degree of sterility assurance for critical applications.



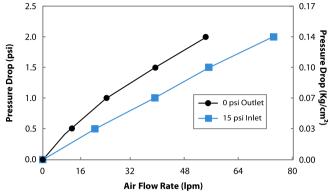

		Construction		
Pore Size		0.2	μm	
Membrane		Hydropho	bic PVDF	
Support (Drainage) Layers		Poly	ester	
Plastic Parts		Polypro	pylene	
	Integr	rity Testing/Retention		
Bubble Point		<u>></u> 18 psi (1.26 Kg/cm²) wit	h 50% IPA/Water Solution	
Microbial Retention		LRV >7 for Brevundimonas di	<i>minuta</i> (ATCC 19146) per cm ²	
		Size		
Size	1″	2″	5″	8″
Effective Filtration Area (Nominal)	250 cm ²	500 cm ²	1000 cm ²	2000 cm ²
Vent and Drain		¼" Hose Barb wit	h Silicone 'O' ring	
		Operational		
Max. Operating Temperature		80 °C @ <u><</u> 30∣	osi (2 Kg/cm²)	
Max. Differential Pressure		60 psi (4 Kg/	cm²) @ 30 °C	
Sterilization By Irradiation	Gamma Irradiatable	up to 50 kGy. These filters sh	ould not be autoclaved or in-	line steam sterilized.
Shelf Life		2 years after Gan	nma Sterilization	

Air Flow Rates

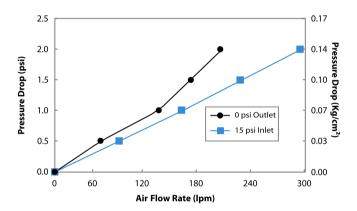

0.2 µm AseptiVent VF - y, 1" Capsule Filters, EE Connection

0.2 µm AseptiVent VF - γ , 5" Capsule Filters, EE Connection

End Connection Type E: 1¹/₂" Sanitary Flange

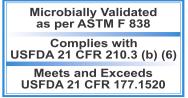


Ordering Information

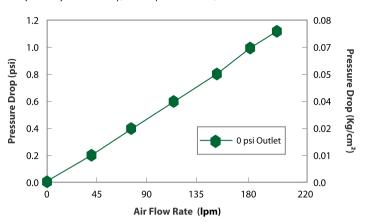

* Gamma Sterile filters cannot be Gamma Irradiated again

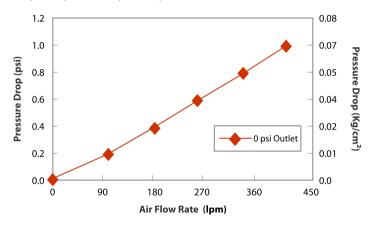
For End Connection availability and dimensions with different sizes refer Pages 89-90.

0.2 μm AseptiVent VF-γ, 2" Capsule Filters, EE Connection


0.2 μm AseptiVent VF -γ, 8" Capsule Filters, EE Connection

*AseptiVent VF-*γ Large Capsule Filters (5", 10", 20", 30")


AseptiVent VF- γ PVDF membrane vent filters are validated for microbial retention with liquid bacterial challenge test as per ASTM F838 to provide a high degree of sterility assurance for critical applications.


	Construct	ion								
Pore Size		0.2	μm							
Membrane		Hydroph	obic PVDF							
Support (Drainage) Layers		Poly	ester							
	Integrity Testing/	/Retention								
Bubble Point		\geq 18 psi (1.26 Kg/cm ²) wit	h 50% IPA/Water Solution							
Microbial Retention	LRV >7 for <i>Brevundimonas diminuta</i> (ATCC 19146) per cm ²									
	Size									
Size	5″	10″	20″	30″						
Effective Filtration Area (Nominal)	3000 cm ²	6000 cm ²	12000 cm ²	18000 cm ²						
Vent and Drain		1⁄4" Hose Barb wit	h Silicone 'O' ring							
	Operation	nal								
Typical Air Flow Rate		$67 \text{ Nm}^3/\text{h} @ \Delta P =$	2 psi (15 psi inlet)							
Max. Operating Temperature		80° C @ 2Kg	ı/cm² (30psi)							
Max. Differential Pressure		4Kg/cm ² (60	0psi) @ 30° C							
Minimum Acceptable Bubble Point (with 50% IPA)		≥ 1.26 Kg/o	cm² (18 psi)							
Sterilization By Irradiation	Gamma Irradiatable up	to 50 kGy. These filters sł	nould not be autoclaved o	r in-line steam sterilized.						

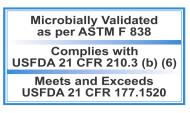
Air Flow Rates

0.2 µm AseptiVent VF - γ, 5" Capsule Filters, EE Connection

0.2 μm AseptiVent VF-γ, 10" Capsule Filters, EE Connection

End Connection Type: E: 11/2" Sanitary Flange

Ordering Information

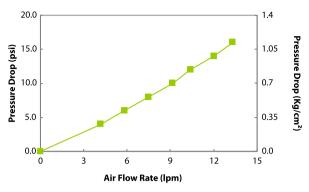

Туре		Si	ze	Pore	Size	Inlet/Outlet	:	Radiation Ste	rilizable	Inline /	T-line	Sterili	ty	Pac	k Size
	Code		Code		Code				Code		Code		Code		Code
AseptiVent VF	LVLX	5″**	53	0.2 μm	01	1½" Sanitary Flange	Е	Yes	R	Inline	Х	Non Sterile	1	1	01
		10″	54			Single Step ½" Hose		No*	Х	T-line	Т	Gamma	3		
		20″	55			Barb	Q					Sterile	5		
		30″	56			¾" Sanitary Flange	S								
						³∕₃" Hose Barb	- I								
Example:						1" Hose Barb	Z								
LVLX	[5	4	01		EE		R		х		1			01

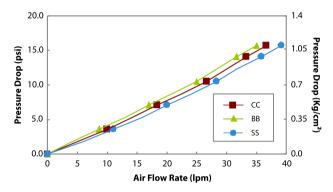
* Gamma Sterile filters cannot be Gamma Irradiated again

**Size 5" is available in In-line Capsule Filters Only

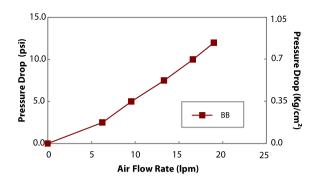
AseptiVent TF Inline Capsule Filters (25 mm, 37 mm, 50 mm)

AseptiVent TF Disposable Inline PTFE gas filters are convenient pre-fabricated devices used for sterilization of gases and as a bacterial air vent in various pharmaceutical and biopharmaceutical processes.




		Constructio	on						
Membrane			Hydrophob	Dic PTFE					
Plastic Parts			Polypropylene						
Final Filter Pore S	bize	0.2 μm 0.45 μm							
		Integrity Testing/R	etention						
Bubble Point		\geq 22 psi (1.54 Kg/cm ²) with 70% IPA/Wate	er Solution	<u>></u> 10 psi (0.7 Kg/	cm ²) with 70% IPA/Water Solution				
Microbial Bacter	ial Retention	LRV >7 for <i>Brevundimonas dimin</i> (ATCC 19146) per cm ²	uta		7 for <i>Serratia marcescens</i> TCC 14756) per cm ²				
		Size							
Size		25 mm 37 mm			50 mm				
Effective Filtratio	n Area (Nominal)	5 cm ²	10 cm	n²	20 cm ²				
		Operationa	al						
Max. Operating 7	lemperature		60 °C	C					
Max. Differential	Pressure		42 psi (3 Kg/cn	n²) @ 30 °C					
Burst Pressure		> 14 Kg/cm²	> 8 Kg/	cm ²	> 8 Kg/cm ²				
	By Gas	S	terilizable by Etl	hylene Oxide					
Sterilization	By Autoclave	Autoclavable at 125 °C for 3	0 minutes, 30 c	ycles. Cannot be li	n-line steam sterilized				
Shelf Life		3 years	after Ethylene	Oxide Sterilizatior	1				

Air Flow Rates

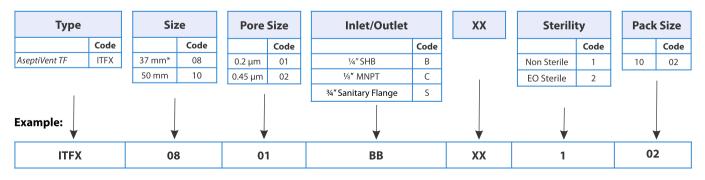

0.2 µm AseptiVent TF, 25 mm Capsule Filters

0.2 µm AseptiVent TF, 50 mm Capsule Filters

0.2 µm AseptiVent TF, 37 mm Capsule Filters

End Connection Type:

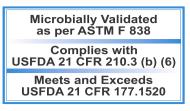
B: 1/4" Stepped Hose Barb


C: 1/8" MNPT S: 34" Sanitary Flange

Ordering Information

AseptiVent TF- 25 mm

Туре	Siz	:e	Pore	Size	Inlet/Outle	t	XX	Sterili	ty	Pack	Size
Code		Code		Code		Code			Code		Code
AseptiVent TF ITFX	25 mm	06	0.2 μm	01	Female Luer Lock	М		Non Sterile	1	100	04
1	1		0.45 μm	02	Male Luer Slip	N		EO Sterile	2		
					1⁄8" Hose Barb	н					
					1⁄4" Hose Barb	В					
Example:	•	r	V		*		•	\checkmark		1	
ITFX	06	5	0 1	I	MN		ХХ	1		04	4


AseptiVent TF- 37 mm, 50 mm

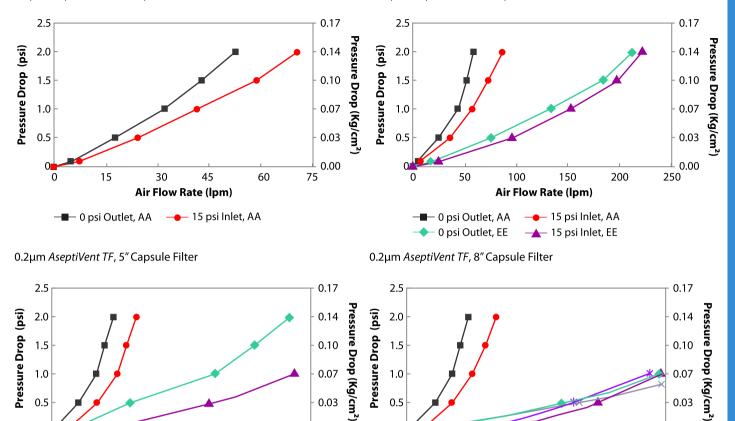
* Note: AseptiVent TF- 37 mm is available with BB connection only

AseptiVent TF Small Capsule Filters (1", 2", 5", 8")

AseptiVent TF capsule filters employ hydrophobic PTFE membrane offering absolute retention and very wide chemical compatibility making these useful for sterile filtration of air/gases as well as aggressive solvents.

		Construct	tion							
Membrane			Hydrophob	ic PTFE						
Support (Drainage) Layer	S		Polypropy	lene						
Plastic Parts			Polypropy	lene						
Final Filter Pore Size		0).2 μm	0	45 μm					
		Integrity Testing	/Retention							
Bubble Point (with 70% IF	PA Wetted)	≥ 22 psi (1.5	5 Kg/cm²)	≥ 10 psi ((0.7 Kg/cm²)					
Microbial Retention (LRV	>7 for)	<i>Brevundimonas diminuta</i> (ATCC 19146) per cm ² <i>Serratia marcescens</i> (ATCC 14756) per cm ²								
		Size								
Size		1″	2″	5″	8″					
Effective Filtration Area (N	Nominal)	250 cm ²	500 cm ²	1000 cm ²	2000 cm ²					
Vent and Drain			¼" Hose Barb with S	ilicone 'O' ring						
		Operatio	onal							
Max. Operating Temperat	cure		80 <u>°C @</u> <u><</u> 30 psi	(2 Kg/cm²)						
Max. Differential Pressure			60 psi (4 Kg/cm	²) @ 30 ℃						
	By Gas		Sterilizable by Eth	ylene Oxide						
Sterilization	By Autoclave		Autoclavable at 125 °C 50 cycles. Cannot be In-l							
Shelf Life			3 years after Ethylene (Dxide sterilization						

Air Flow Rates


0.2µm AseptiVent TF, 1" Capsule Filter

0.2µm AseptiVent TF, 2" Capsule Filter

0.00

250

200

0.00

E: 11/2" Sanitary Flange

250

200

0/

0

50

- 0 psi Outlet, AA

0 psi Outlet, EE

—— 0 psi Outlet, QQ

Q: Single Step ½" Hose Barb

100

150

🕂 15 psi Inlet, QQ

Air Flow Rate (Ipm)

Ordering Information

End Connection Type

50

- 0 psi Outlet, AA

O psi Outlet, EE

100

150

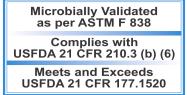
🗕 🗕 15 psi Inlet, AA

📥 15 psi Inlet, EE

A: ¼″ Stepped Hose Barb

Air Flow Rate (lpm)

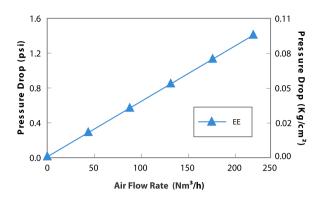
0


0

Туре	•	Si	ze	Pore	Size	Inlet/Outlet		X	х	Sterili	ty	Pack	(Size
	Code		Code		Code		Code				Code		Code
AseptiVent TF	DTLX	1″	51	0.2 μm	01	1⁄4″ SHB	A			Non Sterile	1	1	01
		2″	52	0.45 μm	02	1⁄4″ MNPT	В			EO Sterile	2		
		5″	53			½″MNPT	С						
		8″	57			1⁄2" Hose Barb	D						
						1½" Sanitary Flange	E						
						¾" Sanitary Flange	S						
						Quick Connector	J						
						Single Step ½" Hose Barb	Q						
						Female Luer Lock	U						
						Male Luer Slip	W						
						¾6″ Hose Barb	Ν						
Example:						³ ∕ ₈ " Hose Barb	I						
DTL	ĸ	5	3	0	I	DD		Х	Х	1		0	1

AseptiVent TF Large Capsule Filters (5", 10", 20", 30")

AseptiVent TF PTFE large capsule filters offer absolute retention and wide chemical compatibility for sterile filtration of air/gases as well as aggressive solvents in large volume.



		Construct	ion					
Membrane			Hydroph	obic PTFE				
Support (Drainage) La	ayers		Polypro	pylene				
Plastic Parts			Polypro	ppylene				
Pore Size		0.2 μm 0.45 μm						
		Integrity Testing/	Retention					
Bubble Point (with 70	0% IPA Wetted)	<u>></u> 22psi(1	.55Kg/cm ²)	<u>≥</u> 10 psi (0.7 Kg/cm²)			
Microbial Retention (LRV >7 for)			onas diminuta 146) per cm²	<i>Serratia marcescens</i> (ATCC 14756) per cm ²				
		Size						
Size		5″	10″	20″	30″			
Effective Filtration Are	ea (Nominal)	3000 cm ²	6000 cm ²	12000 cm ²	18000 cm ²			
Vent and Drain			1/4" Hose Barb wit	h Silicone 'O' ring				
		Operatio	nal					
Max. Operating Temp	perature		80 °C @ ≤ 30	psi (2 Kg/cm²)				
Max. Differential Pres	sure		60 psi (4 Kg/	cm²) @ 30 °C				
	By Gas		Sterilizable by	Ethylene Oxide				
Sterilization	By Autoclave			or 30 minutes, 30 cycles. e steam sterilized				
Shelf Life			3 years after Ethyler	e Oxide sterilization				

Air Flow Rates

0.2 µm AseptiVent TF, 10" Large Capsule Filters

End Connection Type E: 1¹/₂" Sanitary Flange

Ordering Information

Туре	•	S	ize	Pore	Size	Inlet/Outlet	t	x	Inline /	T-line	Sterili	ity	Рас	k Size
	Code		Code		Code		Code			Code		Code		Code
AseptiVent TF	LTLX	5″*	53	0.2 μm	01	1½" Sanitary Flange	E		Inline	Х	Non Sterile	1	1	01
		10″	54	0.45 μm	02				T-line	Т	EO Sterile	2		
		20″	55			Single Step ½" Hose Barb	Q		L					
		30″	56			³ 4" Sanitary Flange	S							
						%″ Hose Barb	I							
						1″ Hose Barb	Z							
Example:														
LTL>	K	5	54	01		EE		x	Х		1		(01

* Size 5" is available in In-line Capsule Filters Only

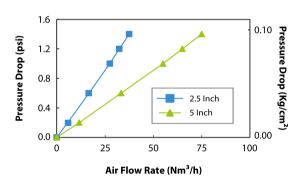
AseptiSure TH Mini Cartridge filters

mdi AseptiSure TH PTFE membrane mini cartridge filters are specially designed high temperature resistant PTFE filters which are steam sterilizable at upto 135°C. These filters are validated with liquid microbial challenge test as per ASTM F 838 to offer absolute retention even under high moisture conditions.

These are also validated for other key performance parameters such as chemical compatibility, extractables, heat stability, flow rates, blow through and ability to withstand accidental reverse pressure. These are available in a variety of pore sizes to suit specific microfiltration needs in critical and specialized process applications for air as well as liquid.

Specifications

		Construction							
Pore Size		0.2 μm	0.45 μm						
Membrane		Hydrophobic PTFE							
Support (Drainag	ge) Layers	Polypropylene							
Plastic Parts		Polypropylene							
	Inte	grity Testing/Retention							
Bubble Point (70% IPA/Water))	22psi (1.54 kg/cm²)	10psi (0.7 kg/cm²)						
Water Intrusion	2.5″	\leq 0.3 ml/min @ 2.0kg/cm ² –							
Rate	5″	\leq 0.6 ml/min @ 2.0kg/cm ² –							
Microbial Bacter (LRV >7 for)	ial Retention	Brevundimonas diminuta Serratia marce (ATCC 19146) per cm ² (ATCC 14756) p							
		Size							
Size		2.5″	5″						
Effective Filtratic (Nominal)	on Area	1000 cm ²	2000 cm ²						
		Operational							
Max. Operating	Temperature	95 °C @ <u><</u> 2 Kg,	/cm² (30 psi)						
Max. Differential	Pressure	3.5 Kg/cm² (50	psi) @ 25 °C						
Reverse Pressure	<u>)</u>	≤ 0.7 Kg/cm² (10 psi) @ 25 °C							
Sterilization		Autoclavable/In-line steam sterilizable at 135 ° C @ maximum differential pressure of 5 psi (0.35 kg/cm²) for 30 minutes, 80 cycles							


Microbially Validated as per ASTM F 838

Complies with USFDA 21 CFR 210.3 (b) (6)

Meets and Exceeds USFDA 21 CFR 177.1520

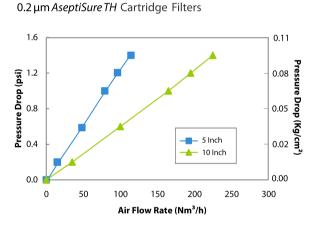
Air Flow Rates

0.2 µm AseptiSure TH Mini Cartridge Filters

Ordering Information

Туре		Si	ize	Pore	Size	Ada	oter	Elastomer		Sterility		Pack S	
	Code		Code		Code		Code		Code		Code		C
AseptiSure TH	CPTH	2.5″	50	0.2 μm	01	4463	EO	Silicone	SS	Non Sterile	1	1	(
		5″	53	0.45 μm	02	4463B	HO						
			4440	UO									
						Seal-K	G0*	*G0 adapter is not available with elastomer. Please m XX in place of elastomer code while ordering					nent
						Seal-O	F0		e of elast	omer code whi	le orderi	ng	
						Seal-M	JO						
xample:													
СРТН		0	0	1	EC)	SS		1		0	1	

AseptiSure TH Standard Cartridge Filters


AseptiSure TH are high temperature resistant PTFE membrane cartridge filters which are steam sterilizable at 135°C. These filters are validated with liquid microbial challenge test as per ASTM F 838 to offer absolute retention even under high moisture conditions.

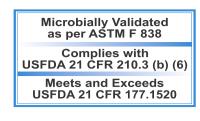
Specifications

	Construe	ction			
Final Filter Pore Size	0.2	! μm	0.4	5 µm	
Membrane		Hydropho	bic PTFE		
Support (Drainage) Layers		Polypro	pylene		
Plastic Parts		Polypro	pylene		
Integ	grity Testin	g/Retentio	n		
Air Diffusion Flow (with 70% IPA Wetted) (10" Cartridge Filter)	\leq 45 ml/min @ 16 psi \leq 45 ml/min @ 8 (1.12 Kg/cm ²) (0.56 Kg/cm ²)				
Microbial Retention (LRV >7 for)	Brevundimonas diminuta Serratia marcescen (ATCC 19146) per cm ² (ATCC 14756) per cr				
	Size	ł			
Size	5″	10″	20″	30″	
Effective Filtration Area (Nominal)	3000 cm ²	6000 cm ²	12000 cm ²	18000 cm ²	
	Operati	onal			
Max. Operating Temperature	9	95 °C @ <u><</u> 30 p	osi (2 Kg/cm²))	
Max. Differential Pressure	:	50 psi (3.5 Kg	/cm²) @ 25 °C		
Reverse Pressure	<u> </u>	_10 psi (0.7 Ko	g/cm²) @ 25 °	С	
Sterilization	@ maxi	ble/In-line ste mum differer (g/cm²) for 30	tial pressure	of 5 psi	

Air Flow Rates

Ordering Information

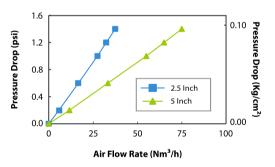
Туре		S	ize	Pore	Size	Adapt	er	Elastom	ner	Sterility		Pack Size	
	Code		Code		Code		Code		Code		Code		Code
AseptiSure TH	СРТН	5″	53	0.2 μm	01	7P	A0	Silicone	SS	Non Sterile	1	1	01
		10″	54	0.45 μm	02	7P without fin	A1	Viton	SV		·		
		20″	55			28 with fin	C0	EPDM	SE				
		30″	56			'O'	D0	FEP					
								Encapsulated	FV				
Example:								Viton					
СРТН	I		56	0	1	A0		SS		1		C	01


AseptiSure TF Mini Cartridge filters

mdi AseptiSure TF PTFE membrane mini cartridge filters are hydrophobic filters offering absolute retention. These filters are designed for sterilizing filtration of gases. The high quality of membrane and design of cartridge assures long life and ability to withstand adverse process conditions experienced during use.

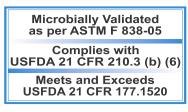
mdi AseptiSure TF filters are validated for key performance parameters such as retention efficiency, chemical compatibility, extractables, heat stability, flow rates and blow through.

Specifications


		Construction				
Final Filter Pore	Size	0.2 μm	0.45 μm			
Membrane		Hydropho	bic PTFE			
Support (Drainag	ge) Layers	Polypro	pylene			
Plastic Parts		Polypro	pylene			
	Inte	grity Testing/Retention	1			
Bubble Point		22psi (1.52 Bar) with 70% IPA/Water Solution	10psi (0.69 Bar) with 70% IPA/Water Solution			
Water Intrusion	2.5″	\leq 0.3 ml/min @ 2.0kg/cm ²	-			
Rate	5″	\leq 0.6 ml/min @ 2.0kg/cm ²	-			
Microbial Bacter (LRV >7 for)	ial Retention	<i>Brevundimonas diminuta</i> (ATCC 19146) per cm ²	<i>Serratia marcescens</i> (ATCC 14756) per cm ²			
		Size				
Size		2.5″	5″			
Effective Filtratic (Nominal)	on Area	1000 cm ²	2000 cm ²			
		Operational				
Max. Operating	Temperature	80 °C @ <u><</u> 2 Kg	/cm² (30 psi)			
Max. Differential	Pressure	3.5 Kg/cm² (50 psi) @ 25 °C				
Reverse Pressure	2	<u>≤</u> 0.7 Kg/cm² (10 psi) @ 25 °C				
Sterilization		Autoclavable/In-line steam sterilizable at 121°C @maximum differential pressure of 3 psi (0.21 kg/cm ²) for 30 minutes, 100 cycles				

Air Flow Rates

0.2 µm AseptiSure TF Mini Cartridge Filters

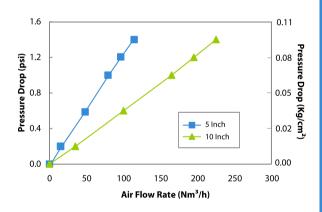


Ordering Information

Туре		Si	Size		Pore Size		oter	Elastomer		Sterility		Pack Size			
	Code		Code		Code		Code		Code		Code		Code		
AseptiSure TF	CPTF	2.5″	50	0.2 μm	01	4463	E0	Silicone	SS	Non Sterile	1	1	01		
		5″	53	0.45 μm	02	4463B	H0								
				·		4440	U0								
						Seal-K	G0*			ilable with elas			ntion		
						Seal-O	F0	XX in place	of elastor	ner code while	ordering	J			
Example:						Seal-M	JO								
CPTF 50 01 E0 SS 1					0	1									

AseptiSure TF Standard Cartridge Filters

AseptiSure TF cartridge filters employ hydrophobic PTFE membrane offering absolute retention, wide chemical compatibility, and are validated with liquid bacterial challenge test.



Specifications

	Construc	tion			
Final Filter Pore Size	0.2	μm	0.45	ōμm	
Membrane		Hydropho	obic PTFE		
Support (Drainage) Layers		Polypro	pylene		
Body and Core		Polypro	pylene		
Integ	grity Testing	g/Retentio	า		
Air Diffusion Flow (with 70% IPA Wetted) (10" Cartridge Filter)	\leq 45 ml/min @ 16 psi (1.12 Kg/cm ²) \leq 45 ml/min @ 8 ps (0.56 Kg/cm ²)				
Microbial Retention (LRV >7 for)	Brevundimonas diminuta Serratia marcescer (ATCC 19146) per cm ² (ATCC 14756) per c				
	Size				
Size	5″	10″	20″	30″	
Effective Filtration Area (Nominal)	3000 cm ²	6000 cm ²	12000 cm ²	18000 cm²	
	Operatio	onal			
Max. Operating Temperature	8	30 °C @ <u><</u> 30 p	osi (2 Kg/cm²))	
Max. Differential Pressure	5	50 psi (3.5 Kg/	′cm²) @ 25 °C	2	
Reverse Pressure	<u> </u>	10 psi (0.7 Kg	g/cm²) @ 25 °	с	
Sterilization	@maxir	num differen	am sterilizab tial pressure minutes, 100	of 3 psi	

Air Flow Rates

Ordering Information

Туре		S	ize	Pore	Size	Adapto	er	Elastom	ner	Sterility		Pack	c Size
	Code		Code		Code		Code		Code		Code		Code
AseptiSure TF	CPTF	5″	53	0.2 μm	01	7P	A0	Silicone	SS	Non Sterile	1	1	01
		10″	54	0.45 μm	02	7P without fin	A1	Viton	SV				
		20″	55			28 with fin	C0	EPDM	SE				
		30″	56			'O'	D0	FEP					
						L		Encapsulated Viton	FV				
Example:													
CPTF		5	54	(01	AO		FV		1		0	1

Filters for Clarification and Pre-filtration

mdi offers a range of pre-filters designed to protect the terminal sterilizing grade membrane filters and maximize throughputs.

These are biologically inert filters with wide chemical compatibility, offering very high retention efficiency and are available in cartridge filter and capsule filter formats, in different sizes, pore sizes and end connections to suit different needs.

These filter devices are available as:

Filter Type	Product Name
Polyethersulfone Membrane Capsule Filters with Microglassfiber Upstream	ClariPro GK
Polyethersulfone Membrane Cartridge Filters with Microglassfiber Upstream	ClariSure GK
Microglassfiber Capsule Filter	ClariCap GS
Miana alegafikan Cantuida e Filtan	ClariSure GS
Microglassfiber Cartridge Filters	ClariSure GP
Polypropylene Capsule Filters	ClariCap PP
Polypropylene Cartridge Filters	ClariSure PA

Applications

- > Precipitate removal post viral inactivation
- > Pre-filtration of cell culture media
- > Pre-filtration of serum and other viscous biologicals
- > Pre-filtration of serum solutions
- > Clarification of cell harvest supernatant
- > Pre-filtration of protein solutions
- Pre-filtration of high value difficult to filter drug solutions
- > Pre-filtration of large volume parenterals
- > Pre-filtration of difficult to filter SVP
- > Polishing of turbid solutions
- > Pre-filtration of fermentor air

Quality Assurance

These filter devices are manufactured in Class 10,000 clean rooms under ISO 9001:2015 certified quality management systems and are deeply validated to meet compendia and regulatory requirements.

	Assurance
Toxicity	Passes Bioreactivity test, In Vivo, as per USP <88> for Class VI plastics
Non Fiber Releasing	Passes test as per USP and comply with USFDA 21 CFR Part 210.3 (b)(6) for fiber release
Extractables with WFI	Passes test as per USP <661>
Oxidizable Substances	Within limits as specified in USP <1231>
Particle Shedding	Passes test as per USP <788> for particulate matter in injection
Indirect Food Additive	All Polypropylene components meet the FDA Indirect Food Additive requirements cited in 21 CFR 177.1520
Good Manufacturing Practice	These products are manufactured in a facility which adheres to Good Manufacturing Practices

Filter Selection Chart

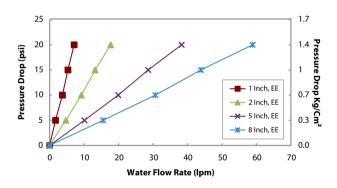
Application Area	Key Application Requirements	Capsule Fi	lters	Cartridge Filters			
Biopharmaceuticals							
Precipitate removal post viral inactivation	 High retention efficiency High throughput 	ClariPro GK PES Membrane Capsule Filters with Microglassfiber upstream	ClariCap GS Microglassfiber Capsule Filters	ClariSure GK PES Membrane Cartridge Filters with Microglassfiber upstream	ClariSure GS Microglassfiber Cartridge Filters		
Pre-filtration of cell culture media	 High retention efficiency High throughput 	ClariPro GK PES Membrane Capsule Filters with Microglassfiber upstream	ClariCap GS Microglassfiber Capsule Filters	ClariSure GK PES Membrane Cartridge Filters with Microglassfiber upstream	ClariSure GS Microglassfiber Cartridge Filters		
Prefiltration of serum and other viscous biologicals	- High retention efficiency - High throughput	ClariPro GK PES Membrane Capsule Filters with Microglassfiber upstream	ClariCap GS Microglassfiber Capsule Filters	ClariSure GK PES Membrane Cartridge Filters with Microglassfiber upstream	ClariSure GS Microglassfiber Cartridge Filters		
Pre-filtration of serum solutions	 High retention efficiency High throughput 	ClariPro GK PES Membrane Capsule Filters with Microglassfiber upstream	ClariCap GS Microglassfiber Capsule Filters	ClariSure GK PES Membrane Cartridge Filters with Microglassfiber upstream	ClariSure GS Microglassfiber Cartridge Filters		
Clarification of cell harvest supernatants	 High retention efficiency High throughput 	ClariPro GK PES Membrane Capsule Filters with Microglassfiber upstream	ClariCap GS Microglassfiber Capsule Filters	ClariSure GK PES Membrane Cartridge Filters with Microglassfiber upstream	ClariSure GS Microglassfiber Cartridge Filters		
Pre-filtration of fermentor air	- High retention efficiency	-	ClariCap PP Polypropylene Capaule Filters	ClariSure PA Pleated Polypropylene Cartridge Filters	-		
Pre-filtration of proteinaceous liquids	- Low hold up volume - High throughput	ClariPro GK PES Membrane Capsule Filters with Microglassfiber upstream	ClariCap PP Polypropylene Capaule Filters	-	-		
Pharmaceuticals							
Pre-filtration of high value difficult to filter drug solutions	- High retention efficiency - High throughput	ClariPro GK PES Membrane Capsule Filters with Microglassfiber upstream	ClariCap GS Microglassfiber Capsule Filters	ClariSure GK PES Membrane Cartridge Filters with Microglassfiber upstream	ClariSure GS Microglassfiber Cartridge Filters		
Pre-filtration of large volume parenterals	 High retention efficiency High throughput 	-	-	ClariSure PA Pleated Polypropylene Cartridge Filters	ClariSure GP Microglassfiber Cartridge Filters		
Pre-filtration of difficult to filter SVP like Oxytetracycline	- High retention efficiency - High throughput	-	_	ClariSure GK PES Membrane Cartridge Filters with Microglassfiber upstream	ClariSure GP Microglassfiber Cartridge Filters		
Polishing of turbid solutions	 Very high retention efficiency for colloidal particles High throughput 	ClariPro GK PES Membrane Capsule Filters with Microglassfiber upstream	ClariCap GS Microglassfiber Capsule Filters	ClariSure GK PES Membrane Cartridge Filters with Microglassfiber upstream	ClariSure GS Microglassfiber Cartridge Filters		

ClariPro GK Small Capsule Filters (1", 2", 5", 8")

ClariPro GK hydrophilic PES membrane capsule filters are ready to use, disposable filtration devices. These filters are specially designed filters incorporating a microglassfiber upstream layer and a downstream PES membrane layer and are used as pre-filters in biopharmaceuticals process development as well as manufacturing processes for difficult to filter solutions.

Radiation Sterilizable:	ClariPro GK-γ
Autoclavable:	ClariPro GK

Specifications


		Constr	uction				
Pore Size			0.1µm, 0.2	μm, 0.5μm			
Membrane			Hydrop	hilic PES			
Pre-filter			Microg	lassfiber			
Support (Dra	ainage) Layers		Poly	vester			
Plastic Parts			Polypr	opylene			
		Si	ze				
Size		1″	1" 2" 5"				
Effective Filt (Nominal)	ration Area	150 cm ²	1000 cm ²	1500 cm ²			
Vent and Dra	ain	¼" Hose Barb with Silicone 'O' ring					
		Opera	tional				
Max. Operat Temperature	5		80 °C @ <u><</u> 30	psi (2 Kg/cm²)			
Max. Differe	ntial Pressure		60 psi (4 Kg,	/cm²) @ 30 °C			
	By Irradiation		'	rradiatable u autoclaved or	. ,		
Sterilization	By Gas	ClariPro GK	: Sterilizable b	by Ethylene Ox	ide		
	By Autoclave	ClariPro GK : Autoclavable at 125 °C for 30 minutes, 25 cycle.					
		These canno	ot be In-line s	team sterilize	ed		

Water Flow Rates

0.5 µm ClariPro GK Capsule Filters

E: 1¹/₂" Sanitary Flange Connections

Ordering Information

Туре		Si	ize	Pore	Size	Inlet/Outlet			ation izable	x	Sterili	ty	Pack S	
	Code		Code		Code		Code	Stern				Code		Code
ClariPro GK	DGKX	1″	51	0.1 μm	36	1⁄4″ SHB	A		Code		Non Sterile	1	1	01
		2″	52	0.2 μm	01	1⁄2" Hose Barb	D	Yes	R		EO Sterile	2		
		5″	53	0.5 μm	04	1½" Sanitary Flange	E	No*	Х		Gamma	3		
		8″	57			¾" Sanitary Flange	S				Sterile	3		
						Quick Connector	J							
						Single Step ½" Hose Barb	Q							
						Female Luer Lock	U							
						Male Luer Slip	W							
Example:						³⁄₁₀" Hose Barb	N							
-						³∕₃" Hose Barb	I							
						ц								
DGK	x	5	57	04	4	DD			R	x	1		0	1

*Gamma Sterile capsule filters cannot be Gamma Irradiated again

ClariPro GK Large Capsule Filters (5", 10", 20", 30")

ClariPro GK hydrophilic PES membrane large capsule filters are ready to use, disposable filtration devices with a microglassfiber upstream layer and a downstream PES membrane final layer.

The microglassfiber layer offers high dirt holding capacity and efficient retention of colloidal particles to give clear downstream in case of difficult to filter turbid solutions. The downstream PES membrane offers absolute retention and low protein binding along with high flow rates.

Radiation Sterilizable:ClariPro GK-γAutoclavable:ClariPro GK

Specifications

		Constru	iction						
Pore Size 0.1 μm, 0.2 μm, 0.5 μm									
Membrane			Hydroph	nilic PES					
Pre-filter			Microgl	assfiber					
Support (Dra	inage) Layers		Polye	ester					
Plastic Parts			Polypro	pylene					
Size									
Size		5″	10″	20″	30″				
Effective Filtr (Nominal)	ation Area	2500 cm ²	m ² 5000 cm ² 10000 cm ² 1500						
Vent and Dra	iin	¼" Hose Barb with Silicone 'O' ring							
		Operat	ional						
Max. Operating 80 °C @ \leq 30 psi (
Max. Differer	ntial Pressure	60 psi (4 Kg/cm²) @ 30 °C							
	By Irradiation		y: Gamma Irrac d not be aut						
Sterilization	By Gas	ClariPro GK: Sterilizable by Ethylene Oxide							
	By Autoclave	25 cycles	Autoclavable		r 30 minutes,				
	These cannot	be In-line ste	am sterilized						

Complies with USFDA 21 CFR 210.3 (b)(6) Meets and Exceeds USFDA 21 CFR 177.1520

Water Flow Rates

E: 1¹/₂" Sanitary Flange Connections

Ordering Information

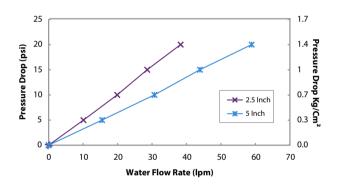
Туре	Si	ze	Pore	Size	Inlet/Outlet			ation izable		line line	Sterility	,	Pack Size	
Code		Code		Code		Code	Jtern		/ 1-			Code		Code
lariProGK LGKX	5″**	53	0.1 µm	36	1½" Sanitary Flange	E		Code		Code	Non Sterile	1	1	01
	10″	54	0.2 μm	01	Single Step ½" Hose Barb	Q	Yes	R	Inline	X	EO Sterile	2		
	20″	55	0.5 μm	04	³ 4" Sanitary Flange	S	No*	Х	T-line	Т	Gamma Sterile	3		
	30″	56			³‰" Hose Barb	1								
ample:					1" Hose Barb	Z								
LGKX 54 01		EE		F	2		т	1		(01			

** Size 5" is available in In-line Capsule Filters Only

ClariSure GK Mini Cartridge Filters

ClariSure GK hydrophilic PES membrane mini cartridge filters offer a microglassfiber upstream layer with a PES membrane final filter to combine high dirt holding capacities with efficient retention of colloidal particles to give clear downstream in case of difficult to filter turbid solutions.

Complies with USFDA 21 CFR 210.3 (b)(6) Meets and Exceeds USFDA 21 CFR 177.1520


Specifications

	Construction								
Pore Size	0.1 μm, 0.	2 μm, 0.5 μm							
Membrane	Hydro	philic PES							
Pre-filter	Microg	lassfiber							
Support (Drainage) Layers	Pol	yester							
Plastic Parts	Polypropylene								
	Size								
Size	2.5″	5″							
Effective Filtration Area (Nominal)	1000 cm ²	1500 cm ²							
Operational									
Max. Operating Temperature	80 °C @ <u><</u> 30) psi (2 Kg/cm²)							
Max. Differential Pressure	50 psi (3.5 K	ˈɡ/cm²) @ 25 °C							
Sterilization		ne steam sterilizable minutes, 25 cycles							

Construction

Water Flow Rates

0.5 µm ClariSure GK Mini Cartridge Filters

Ordering Information

Туре		Si	ze	Pore	Size	Ada	oter	Elaston	ner	Sterili	Sterility Pa		ack Size		
	Code		Code		Code		Code		Code		Code		Code		
ClariSure GK	CGKX	2.5″	50	0.1 µm	36	4463	E0	Silicone	SS	Non Sterile	1	1	01		
		5″	53	0.2 μm	01	4463B	H0								
				0.5 µm	04	4440	U0								
						Seal-K	G0*		ter is not available with elastomer. Please mention						
						Seal-O	F0	XX in place	of elasto	mer code while	ordering)			
						Seal-M	JO								

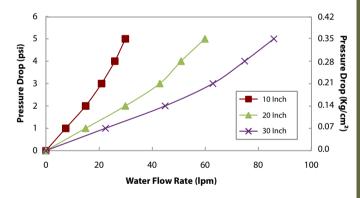
Example:

CGKX 50 04	EO	SS	1	01
------------	----	----	---	----

ClariSure GK Standard Cartridge Filters

ClariSure GK hydrophilic PES membrane cartridge filters offer a microglassfiber upstream layer with a PES membrane final filter to combine high dirt holding capacities with efficient retention of colloidal particles to give clear downstream in case of difficult to filter turbid solutions.

Specifications


	Construe	ction							
Pore Size		0.1 μm, 0.2	2 μm, 0.5 μm	I					
Membrane		Hydrop	hilic PES						
Pre-filter		Microg	lassfiber						
Support (Drainage) Layers		Poly	/ester						
Plastic Parts		Polypropylene							
Size									
Size	5″	10″	20″	30″					
Effective Filtration Area (Nominal)	2500 cm ²	5000 cm ²	10000 cm ²	15000 cm ²					
Operational									
Max. Operating Temperature	8	0 °C @ <u><</u> 30	psi (2 Kg/cn	n²)					
Max. Differential Pressure	5	0 psi (3.5 K	g/cm²) @ 25	°C					
Sterilization			ne steam ste minutes, 25 (

Complies with USFDA 21 CFR 210.3 (b)(6)

Water Flow Rates

0.5 µm ClariSure GK Cartridge Filters

Ordering Information

Туре	9	Size		Size Pore Size		Adapt	Adapter		Elastomer		Sterility		< Size
	Code		Code		Code		Code		Code		Code		Code
ClariSure GK	CGKX	5″	53	0.1 µm	36	7P	A0	Silicone	SS	Non Sterile	1	1	01
		10″	54	0.2 μm	01	7P without fin	A1	Viton	SV	L			
		20″	55	0.5 μm	04	28 with fin	C0	EPDM	SE				
		30″	56			'O'	D0	FEP					
						L		Encapsulated Viton	FV				

Example:

СGКХ	56	36	AO	SS	1	01
------	----	----	----	----	---	----

ClariCap GS Small Capsule Filters (1", 2", 5", 8")

ClariCap GS capsule filters employ microglassfiber filter media for efficient retention of colliodal particles to give clear downstream in case of difficult to filter turbid solutions. These specially designed filtration devices are non media migrating with a heat calendered polypropylene layer in the downstream.

Specifications

Ordering Information

	Construc	tion							
Pore Size	0.	7 μm, 1 μm,	1.5 μm, 2 μ	ım					
Filter Media Microglassfiber									
Plastic Parts		Polypro	pylene						
	Size								
Size	1″	2″	5″	8″					
Effective Filtration Area (Nominal)	150 cm ²	400 cm ²	800 cm ²	1200 cm ²					
Vent and Drain	1⁄4″ Ho	ose Barb wit	h Silicone '(D' ring					
	Operatio	nal							
Max. Operating Temperature	80 °C $@\leq$ 30 psi (2 Kg/cm ²)								
Max. Differential Pressure	e 60 psi (4 Kg/cm²) @ 30 °C								
Sterilization		vable at 12 Cannot be l							

Complies with USFDA 21 CFR 210.3 (b)(6)

Meets and Exceeds USFDA 21 CFR 177.1520

Water Flow Rates

0.7 µm ClariCap GS Capsule Filters

End Connection : D: 1/2" Hose Barb

Туре	•	Si	ze	Pore	Size	Inlet/Outlet		x	Be	I	Sterili	ty	Pack	Size
	Code		Code		Code		Code			Code		Code		Code
ClariCap GS	DGSX	1″	51	0.7 μm	41	1⁄4″ SHB	A		Yes	В	Non Sterile	1	1	01
		2″	52	1 µm	05	1⁄2" Hose Barb	D		No Bell	Х				
		5″	53	1.5 µm	14	1½" Sanitary Flange	E							
		8″	57	2 µm	15	¾" Sanitary Flange	S							
						Quick Connector	J							
						Single Step ½"Hose Barb	Q							
						Female Luer Lock	U							
						Male Luer Slip	W							
						¾6″ Hose Barb	Ν							
Example:						³⁄₀" Hose Barb	I							
Example.														
DGS	x	5	7	0	5	DD		х	х		1		0	1

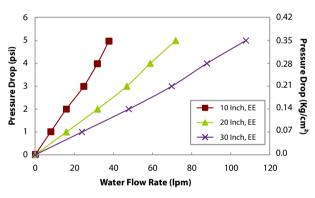
|--|

For End Connection availability, Bell and dimensions with different sizes refer Pages 89-90.

ClariCap GS Large Capsule Filters (5", 10", 20", 30")

ClariCap GS large capsule filters are multilayered, high throughput filters, specially designed for difficult to filter solutions.

These are high efficiency pre-filters combining the unique abilities of microglassfiber filter media to retain colloidal particles and heat calendered polypropylene filter media to ensure non media migration.


Specifications

	Construc	tion						
Pore Size	0.	.7 μm, 1 μm	, 1.5 μm, 2	μm				
Filter Media	Microglassfiber							
Plastic Parts	Polypropylene							
	Size							
Size	5″	10″	20″	30″				
Effective Filtration Area (Nominal)	1700 cm ²	3400 cm ²	6800 cm ²	10200 cm ²				
Vent and Drain	¼" Hose Barb with Silicon 'O' ring							
	Operatio	onal						
Max. Operating Temperature	80 °C @ ≤ 30 psi (2 Kg/cm²)							
Max. Differential Pressure	60 psi (4 Kg/cm²) @ 30 °C							
Sterilization		avable at 12 Cannot be		minutes, m sterilized				

Water Flow Rates

0.7µm ClariCap GS Large Capsule Filters

E: 1¹/₂" Sanitary Flange Connections

Ordering Information

Туре		Si	ze	Pore	Size	Inlet/Outlet		X	Inli / T-l		Sterili	ty	Pack	c Size
	Code		Code		Code		Code		/ 1-1			Code		Code
ClariCap GS	LGSX	5″*	53	0.7 μm	41	1½" Sanitary Flange	E			Code	Non Sterile	1	1	01
		10″	54	1 µm	05	Single Step ½" Hose Barb	Q		Inline	X				
		20″	55	1.5 µm	14	³ 4" Sanitary Flange	S		T-line	I				
		30″	56	2 µm	15	3/8" Hose Barb								
						1" Hose Barb	Z							

Example:

LGSX	54	41	EE	x	т	1	01
					-	-	

*Size 5" is available in Inline capsule filters only

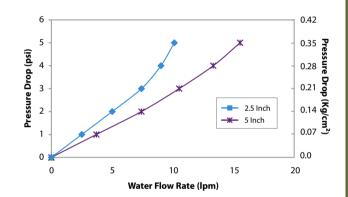
For End Connection availability and dimensions with different sizes refer Page 89-90.

ClariSure GS Mini Cartridge Filters

ClariSure GS mini cartridge filters are multilayered, high throughput filters, specially designed for difficult to filter solutions.

It is a very high efficiency pre-filter combining the unique abilities of microglassfiber filter media to retain colloidal particles and heat calendered polypropylene filter media to ensure non media migration.

Specifications


	Construction					
Pore Size	0.7	μm, 1 μm				
Filter Media	Micro	oglassfiber				
Support (Drainage) Layers	Po	olyester				
Plastic Parts	Poly	propylene				
	Size					
Size	2.5″	5″				
Effective Filtration Area (Nominal)	800 cm ²	1200 cm ²				
	Operational					
Max. Operating Temperature	80 °C $@\leq$ 30 psi (2 Kg/cm ²)					
Max. Differential Pressure	Differential Pressure 50 psi (3.5 Kg/cm ²) @ 25 °C					
Sterilization Autoclavable/In-line steam sterilizable at 121°C for 30 minutes, 30 cycles						

Complies with USFDA 21 CFR 210.3 (b)(6) Meets and Exceeds USFDA 21 CFR 177.1520

Water Flow Rates

0.7 µm ClariSure GS Mini Cartridge Filters

Ordering Information

	Si	ze	Pore	Size	Adap	oter	Elaston	ner	Sterili	ty	Pack	c Size
de		Code		Code		Code		Code		Code		Code
GS	2.5″	50	0.7 μm	41	4463	E0	Silicone	SS	Non Sterile	1	1	01
l	5″	53	1 µm	05	4463B	HO	-	·				
					4440	UO						
					Seal-K	G0*						ntion
					Seal-O	FO	XX in place	e of elasto	mer code while	ordering	I	
					Seal-M	JO						
		de GS 2.5"	de Code GS 2.5" 50	de Code GS 2.5" 50 0.7 μm	de Code Code GS 2.5" 50 0.7 μm 41	de GS 2.5" 50 5" 53 1μm 05 4463B 4440 Seal-K Seal-C	de Code Code <thc< td=""><td>de Code Code Code Code Silicone 5" 53 1 μm 05 4463 H0 Silicone 4440 U0 Seal-K G0* Seal-K G0* XX in place</td><td>de Code Code Code Code Code Code Silicone SS 5" 53 1 μm 05 4463B H0 Silicone SS 4440 U0 Seal-K G0* SCO adapter is not avaitable XX in place of elastory</td><td>de Code Code Code Code Code Silicone SS SS<td>de Code Non Sterile 1 5" 53 1 μm 05 4463 H0 4463 F0 Seal-K G0* Seal-K SG0 adapter is not available with elastomer. Provide the code of t</td><td>de Code <thc< td=""></thc<></td></td></thc<>	de Code Code Code Code Silicone 5" 53 1 μm 05 4463 H0 Silicone 4440 U0 Seal-K G0* Seal-K G0* XX in place	de Code Code Code Code Code Code Silicone SS 5" 53 1 μm 05 4463B H0 Silicone SS 4440 U0 Seal-K G0* SCO adapter is not avaitable XX in place of elastory	de Code Code Code Code Code Silicone SS SS <td>de Code Non Sterile 1 5" 53 1 μm 05 4463 H0 4463 F0 Seal-K G0* Seal-K SG0 adapter is not available with elastomer. Provide the code of t</td> <td>de Code <thc< td=""></thc<></td>	de Code Non Sterile 1 5" 53 1 μm 05 4463 H0 4463 F0 Seal-K G0* Seal-K SG0 adapter is not available with elastomer. Provide the code of t	de Code Code <thc< td=""></thc<>

Example:

	CPGS	50	41	EO	SS	1	01
--	------	----	----	----	----	---	----

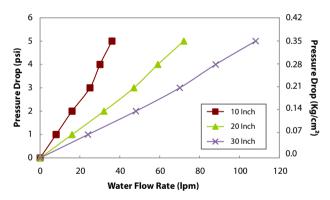
ClariSure GS Standard Cartridge Filters

ClariSure GS cartridge filters are multilayered, high throughput filters, specially designed for difficult to filter solutions.

It is a very high efficiency pre-filter combining the unique abilities of microglassfiber filter media to retain colloidal particles and heat calendered polypropylene filter media to ensure non media migration.

Specifications

Construc	tion					
	0.7 μm	n, 1 μm				
	Microgl	assfiber				
Polyester						
	Polypro	pylene				
Size						
5″	10″	20″	30″			
1700 cm ²	3400 cm ²	6800 cm ²	10200 cm ²			
Operatio	nal					
80 °C @ <u><</u> 30 psi (2 Kg/cm²)						
50 psi (3.5 Kg/cm²) @ 30 °C						
	Size 5" 1700 cm ² Operatio 80 50 Autocla	Microgil Poly Poly Poly T Operational S0 °C @ ≤ 30 S0 si (3.5 Kg	0.7 µm, 1 µm Microglassfiber Polyester Size 5″ 10″ 20″ 1700 cm² 3400 cm² 6800 cm² Operational 80 °C @ ≤ 30 psi (2 Kg/cn			



Complies with USFDA 21 CFR 210.3 (b)(6)

Meets and Exceeds USFDA 21 CFR 177.1520

Water Flow Rates

0.7 µm ClariSure GS Cartridge Filters

Ordering Information

Туре	<u>.</u>	:	Size	Pore	Size	Adapt	er	Elaston	ner	Sterili	ity	Pac	c Size
	Code		Code		Code		Code		Code		Code		Code
ClariSure GS	CPGS	5″	53	0.7 μm	41	7P	A0	Silicone	SS	Non Sterile	1	1	01
		10″	54	1 μm	05	7P without fin	A1	Viton	SV	-			
		20″	55			28 with fin	C0	EPDM	SE				
		30″	56			'O'	D0	FEP					
						L	I]	Encapsulated Viton	FV				

Example:

	PGS	55	41	A0	SV	1	01
--	-----	----	----	----	----	---	----

ClariSure GP Mini Cartridge Filters

ClariSure GP mini cartridge filters are specially designed multilayered precision filtration devices. These cartridge filters act as throughput enhancers, specially in case of difficult to filter solutions.

A microglassfiber upstream layer retains very fine colloidal particles and a downstream polypropylene layer checks any kind of media migration.

Specifications

	Construction				
Pore Size	0.5 μm, 1 μm, 2 μm				
Filter Media	Micro	oglassfiber			
Support (Drainage) Layers	Polypropylene				
Plastic Parts	Polypropylene				
	Size				
Size	2.5″	5″			
Effective Filtration Area (Nominal)	800 cm ²	1600 cm ²			
	Operational				
Max. Operating Temperature	80 °C @ \leq 30 psi (2 Kg/cm ²)				
Max. Differential Pressure	50 psi (3.5 Kg/cm²) @ 25 °C				
Sterilization		line steam sterilizable) minutes, 30 cycles			

Ordering Information

Туре	•	Size		Pore Size		Ada	oter	Elastom	Elastomer		Sterility		Pack Size	
	Code		Code		Code		Code		Code		Code		Code	
ClariSure GP	CPGP	2.5″	50	0.5 µm	04	4463	EO	Silicone	SS	Non Sterile	1	1	01	
		5″	53	1 μm	05	4463B	H0							
				2 µm	15	4440	UO	1						
						Seal-K	G0*			lable with elast		ase ment	ion	
						Seal-O	F0	XX in place o	of elastom	ner code while o	rdering			
						Seal-M	JO							

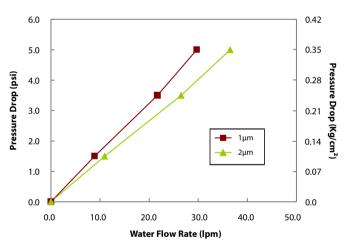
Example:

CPGP 50 05	E0 SS	5 1	01
------------	-------	-----	----

ClariSure GP Standard Cartridge Filters

ClariSure GP cartridge filters are specially designed multilayered precision filtration devices. These cartridge filters act as throughput enhancers, specially in case of difficult to filter solutions.

A microglassfiber upstream layer retains very fine colloidal particles and a downstream polypropylene layer checks any kind of media migration.


Specifications

	Construct	tion				
Pore Size	0.5 μm, 1 μm, 2 μm					
Filter Media	Microglassfiber					
Support (Drainage) Layers		Polypr	opylene			
Plastic Parts	Polypropylene					
	Size					
Size	5″	10″	20″	30″		
Effective Filtration Area (Nominal)	2500 cm ²	5000 cm ²	10000 cm ²	15000 cm ²		
	Operatio	nal				
Max. Operating Temperature	80	0 °C @ <u><</u> 30	psi (2 Kg/cm	1 ²)		
Max. Differential Pressure	50	0 psi (3.5 Kg	g/cm²) @ 25	°C		
Sterilization	Autoclavable/In-line steam sterilizable at 121°C for 30 minutes, 30 cycles					

Water Flow Rates

ClariSure GP, 10" Cartridge Filters

Ordering Information

Туре		Si	ze	Pore	Size	Adapt	er	Elastom	er	Sterili	ty	Pack	c Size
	Code		Code		Code		Code		Code		Code		Code
ClariSure GP	CPGP	5″	53	0.5 μm	04	7P	A0	Silicone	SS	Non Sterile	1	1	01
		10″	54	1 μm	05	7P without fin	A1	Viton	SV				
		20″	55	2 µm	15	28 with fin	C0	EPDM	SE				
		30″	56			'O'	D0	FEP					
								Encapsulated Viton	FV				

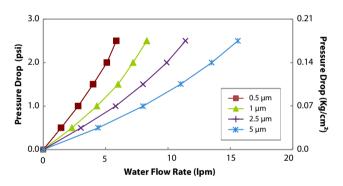
Example:

CPGP 55 04	AO	SS	1	01
------------	----	----	---	----

ClariCap PP Small Capsule Filters (1", 2", 5", 8")

ClariCap PP capsule filters employ high retention efficiency polypropylene filter media with wide chemical compatibility for pre-filtration and polishing applications.

Specifications


	Construct	tion		
Pore Size	0.5 μm, 1	μm, 2.5 μm	, 5 μm, 10 μ	ım, 20 μm
Filter Media		Polypro	opylene	
Support (Drainage) Layers		Polypro	pylene	
Plastic Parts		Polypro	opylene	
	Size			
Size	1″	2″	5″	8″
Effective Filtration Area (Nominal)	250 cm ²	500 cm ²	800 cm ²	1600 cm ²
Vent and Drain	1⁄4″ Ho	se Barb wit	h Silicone '(O' ring
	Operatio	nal		
Max. Operating Temperature	80) °C @ <u><</u> 30∣	psi (2 Kg/cn	n²)
Max. Differential Pressure	6	0 psi (4 Kg/	′cm²) @ 30 °	С
Sterilization			5 °C for 30 r n-line stear	,

Complies with USFDA 21 CFR 210.3 (b)(6)

Water Flow Rates

ClariCap PP, 5" Capsule Filters

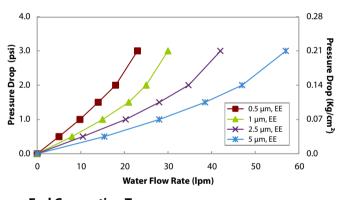
Ordering Information

Туре		s	ize	Pore	Size	Inlet/Outlet		х	х	Sterility	y	Pack	Size
	Code		Code		Code		Code			0	Code		Code
ClariCap PP	DOLX	1″	51	0.5 μm	04	1⁄4″ SHB	A			Non Sterile	1	1	01
		2″	52	1 µm	05	1⁄4″ MNPT	В						
		5″	53	2.5 µm	06	1⁄2″MNPT	C						
		8″	57	5 µm	07	1/2" Hose Barb	D						
				10 µm	08	1½" Sanitary Flange	E						
				20 µm	11	¾" Sanitary Flange	S						
						Quick Connector	J						
						Single Step ½" Hose Barb	Q						
						Female Luer Lock	U						
						Male Luer Slip	W						
						¾6″ Hose Barb	Ν						
Example:						³ ∕₄" Hose Barb	I						
DOL	(5	53	0	5	сс		x	x	1		0	1

For End Connection availability, Bell and dimensions with different sizes refer Pages 89-90.

ClariCap PP Large Capsule Filters (5", 10", 20", 30")

ClariCap PP large capsule filters employ high retention efficiency Polypropylene filter media for wide chemical compatibility, efficient pre-filtration for clarification and polishing applications.


Specifications

	Construc	tion				
Pore Size	0.5 μm, 1	μm, 2.5 μm	n, 5 μm, 10 μ	m, 20 μm		
Filter Media	Polypropylene					
Support (Drainage) Layers		Polypr	opylene			
Plastic Parts		Polypr	opylene			
	Size					
Size	5″	10″	20″	30″		
Effective Filtration Area (Nominal)	2500 cm ²	5000 cm ²	10000 cm ²	15000 cm ²		
Vent and Drain	¼″Hc	ose Barb wi	th Silicone 'C)' ring		
	Operatio	onal				
Max. Operating Temperature	80) ℃ @ <u><</u> 30	psi (2 Kg/cm	1 ²)		
Max. Differential Pressure	60 psi (4 Kg/cm²) @ 30 °C					
Sterilization	Autoclavable at 125 °C for 30 minutes, 30 cycles. Cannot be In-line steam sterilized					

Water Flow Rates

ClariCap PP 10", Large Capsule Filters

End Connection Type:

E: 11/2" Sanitary Flange

Ordering Information

Туре	2	Siz	ze	Pore	Size	Inlet/Outlet		х	Inli / T-l	-	Sterili	ty	Pac	k Size
	Code		Code		Code		Code		/ 1-1	-		Code		Code
ClariCap PP	LOLX	5″*	53	0.5 μm	04	1½" Sanitary Flange	E			Code	Non Sterile	1	1	01
		10″	54	1 μm	05	Single Step ½" Hose Barb	Q		Inline	X				
		20″	55	2.5 μm	06	¾″ Sanitary Flange	S		T-line	Т				
		30″	56	5 µm	07	³∕₀″ Hose Barb	I							
				10 µm	08	1" Hose Barb	Z							
				20 µm	11									
Example:														

LOLX	54	06	QQ	X	т	1	01
------	----	----	----	---	---	---	----

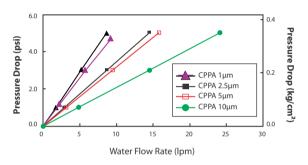
* Size 5" is available in In-line Capsule Filters Only

For End Connection availability and dimensions with different sizes refer Pages 89-90.

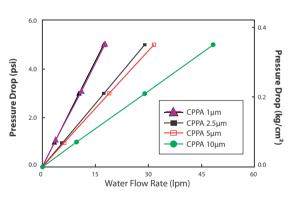
ClariSure PA Mini Cartridge Filters

mdi *ClariSure PA* mini cartridge filters are 100% polypropylene, very high retention efficiency pleated cartridge filters offering large filtration area.

These filters have heat stable construction and are used as pre-filters to sterilizing membrane cartridge filters.


Specifications

	Construction				
Pore Size	0.5 μm, 1 μm, 1.2 μm, 2	2.5 μm, 5 μm, 8 μm, 10 μm			
Filter Media	Polypropylene				
Support (Drainage) Layers	s Polypropylene				
Plastic Parts	Polyp	ropylene			
	Size				
Size	2.5″	5″			
Effective Filtration Area (Nominal)	800 cm ²	1600 cm ²			
	Operational				
Max. Operating Temperature	80 °C @ <u><</u> 30) psi (2 Kg/cm²)			
Max. Differential Pressure	50 psi (3.5 k	(g/cm²) @ 25 °C			
Sterilization		ine steam sterilizable minutes, 100 cycles			



Water Flow Rates

ClariSure PA, 2.5" Mini Cartridge Filters

ClariSure PA, 5" Mini Cartridge Filters

Ordering Information

Туре	•	Si	ize	Pore Size		Adap	Adapter Elastomer		Elastomer		ty	Pack Size	
	Code		Code		Code		Code		Code		Code		Code
ClariSure PA	CPPA	2.5″	50	0.5 µm	04	4463	E0	Silicone	SS	Non Sterile	1	1	01
		5″	53	1 µm	05	4463B	HO		·				
				1.2 µm	10	4440	UO	*C0 adapte	r door not	come with ela	rtomor D	10000 mg	ntion
				2.5 μm	06	Seal-K	G0*			omer while orde		lease lile	nuon
				5 µm	07	Seal-O	F0						
				8 µm	17	Seal-M	٦O						
				10 µm	08		·						
Example:													
СРР	A	5	60	0	5	EC)	SS		1		0	1

For Adapters and Elastomers availability refer Page 91.

Complies with USFDA 21 CFR 210.3 (b)(6)

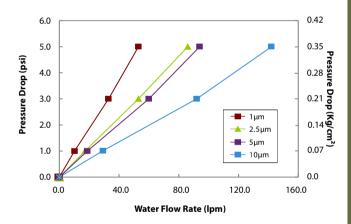
Meets and Exceeds USFDA 21 CFR 177.1520

ClariSure PA Standard Cartridge Filters

ClariSure PA cartridge filters are 100% polypropylene, very high retention efficiency pleated cartridge filters offering large filtration area.

These filters have heat stable construction and are used as pre-filters to sterilizing membrane cartridge filters.

Specifications


Construction							
Pore Size	0.5 μm, 1 μm, 1.2 μm, 2.5 μm, 5 μm, 8 μm, 10 μm						
Filter Media		Polyp	ropylene				
Support (Drainage) Layers		Polyp	ropylene				
Plastic Parts		Polyp	ropylene				
	Size						
Size	5″	10″	20″	30″			
Effective Filtration Area (Nominal)	2500 cm ²	5000 cm ²	10000 cm ²	15000 cm ²			
	Operat	tional					
Max. Operating Temperature	$30^{-1}(a) < 30^{-1}(2 \text{ K}^{-1}(cm^{-1}))$						
Max. Differential Pressure	50 psi (3.5 Kg/cm²) @ 25 °C						
Sterilization			ne steam ste minutes, 100				

Complies with USFDA 21 CFR 210.3 (b)(6)

Water Flow Rates

ClariSure PA, 10" Cartridge Filters

Ordering Information

Туре			Si	ze
	Code			C
ClariSure PA	CPPA		5″	
			10″	
			20″	
			30″	

_			
	Pore	Size	Adapt
		Code	
	0.5 µm	04	7P
	1 µm	05	7P without fin
	1.2 µm	10	28 with fin
	2.5 µm	06	'O'
	5 µm	07	
	8 µm	17	

08

10 µm

r	Elastor	ner
Code		Code
A0	Silicone	SS
A1	Viton	SV
C0	EPDM	SE
D0	FEP Encapsulated Viton	FV

Sterili	ty	Pack	Size
	Code		Code
Non Sterile 1		1	01
Non Sterlie	I	I	01

Example:

СРРА	56	05	A0	SS	1	01	
------	----	----	----	----	---	----	--

Adapte

For Adapters and Elastomers availability refer Page 91.

Code

53

54

55

56

Microglassfiber Disc Filters

Microglassfiber Disc Filters Type - GF2

GF2 filters are high dirt holding microglassfiber disc filters specially designed for pre-filtration of solutions with high dirt load.

Pore Size: 1.5 μm

- Special Features
- High flow rates
- High dirt holding capacity

Fine Microglassfiber Disc Filters - Type GFS

GFS filters are high retention efficiency fine microglassfiber disc filters.

Pore Size: 2 μm

Special Features

High retention efficiency

Positively Charged Microglassfiber Disc Filters- Type GFSZ

GFSZ filters are positively charged high retention efficiency microglassfiber disc filters.

Pore Size: 2 µm

Special Features

> Very high retention efficiency for negatively charged particles

Ordering Information

Тур	e	Si	ze	Pore	Size	хх	хх	Sterili	ity	Pack	Size
	Code		Code		Code				Code		Code
GF2	GF2X	127 mm	15	1.5 μm	14	I		Non Sterile	1	50	03
GFS	GFSX	142 mm	16	2 µm	15					L	
GFSZ	GFSZ	257 mm	17					I.			1
		279 mm	18								
		293 mm	19								
Example:			7				V			,	
GFS	x	1	8	1	5	XX	xx	1		0	3

Filters for Polishing and Clarification

mdi offers a range of cartridge filters for polishing and clarification applications requiring absolute removal of particulate contaminants.

These are non media migrating, biologically and chemically inert, large area cartridge filters, offering very high (99.999%) to moderate high (99.9%) retention efficiencies to suit different applications.

Types Available

- >> ClariSure PP- Pleated Polypropylene cartridge filters
- >> ClariSure PL- Pleated Profile cartridge filters
- >> ClariSure DP- Pleated Depth cartridge filters

Applications

- > Filtration of organic solvents in non sterile API
- > Polishing filtration of Non Sterile API
- > Filtration of precipitating agents
- > Filtration of wash solvents for final non sterile API
- > Filtration of air to dryers and micronizers
- Final wash water for Ampoule/Vial washing and Bung washing
- > Bottle washing in oral formulations
- > Filtration of feed water for RO plants

Quality Assurance

These filter devices are manufactured in Class 10,000 clean rooms under ISO 9001:2015 certified quality management systems and are validated to meet compendia and regulatory requirements.

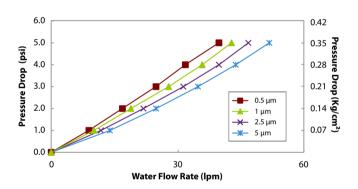
	Assurance
Toxicity	Passes Bioreactivity test, In Vivo, as per USP <88> for Class VI plastics
Non Fiber Releasing	Passes test as per USP and comply with USFDA 21 CFR Part 210.3 (b)(6) for fiber release
Extractables with WFI	Passes test as per USP <661>
Oxidizable Substances	Within limits as specified in USP <1231>
Particle Shedding	Passes test as per USP <788> for particulate matter in injections
Indirect Food Additive	All Polypropylene components meet the FDA Indirect Food Additive requirements cited in 21 CFR 177.1520
Good Manufacturing Practice	These products are manufactured in a facility which adheres to Good Manufacturing Practices

Filter Selection Chart

Application Area	Key Application Requirements		Cartridge Filters	
Filtration of organic solvents in non sterile API	- High retention efficiency - Wide chemical compatibility	ClariSure PP Pleated Polypropylene Cartridge Filters	ClariSure PL Pleated Profile Cartridge Filters	ClariSure DP Pleated Depth Cartridge Filters
Polishing filtration of non sterile API	- Very high retention efficiency - Wide chemical compatibility	ClariSure PP Pleated Polypropylene Cartridge Filters	ClariSure PL Pleated Profile Cartridge Filters	-
Filtration of precipitating agents	- Very high retention efficiency - Wide chemical compatibility	ClariSure PP Pleated Polypropylene Cartridge Filters	ClariSure PL Pleated Profile Cartridge Filters	-
Filtration of wash solvents for final non sterile API	- Very high retention efficiency - Wide chemical compatibility	ClariSure PP Pleated Polypropylene Cartridge Filters	ClariSure PL Pleated Profile Cartridge Filters	_
Filtration of air to dryers and micronizers	- Very high retention efficiency	ClariSure PP Pleated Polypropylene Cartridge Filters	ClariSure PL Pleated Profile Cartridge Filters	_
Final wash water for ampoule/vial washing and bung washing	- Very high retention efficiency - Wide chemical compatibility	ClariSure PP Pleated Polypropylene Cartridge Filters	ClariSure PL Pleated Profile Cartridge Filters	-
Bottle washing in oral formulations	- Very high retention efficiency - Wide chemical compatibility	ClariSure PP Pleated Polypropylene Cartridge Filters	ClariSure PL Pleated Profile Cartridge Filters	-
Filtration of feed water for RO plants	- High dirt holding capacity	-	-	ClariSure DP Pleated Depth Cartridge Filters

ClariSure PP Standard Cartridge Filters

ClariSure PP cartridge filters are 100% polypropylene construction precision filtration devices. These are very high retention efficiency **(99.999%)** pleated cartridge filters offering large filtration area.


These filters are used as terminal filters in applications requiring highly efficient particulate removal.

Specifications

Construction								
Pore Size	0.5 μm, 1μm, 1.2 μm, 2 μm, 2.5 μm, 5 μm 10 μm, 20 μm, 30 μm							
Filter Media		Polypro	opylene					
Support (Drainage) Layers		Polypro	opylene					
Plastic Parts	ic Parts Polypropylene							
	Siz	e						
Size	5″	10″	20″	30″				
Effective Filtration Area (Nominal)	2500 cm ²	5000 cm ²	10000 cm ²	15000 cm ²				
	Operat	ional						
Max. Operating $80 \ ^{\circ}C @ \le 30 \ psi (2 \ Kg/cm^2)$								
Max. Differential Pressure	5	0 psi (3.5 Kg	/cm²) @ 25 °	С				

Water Flow Rates

ClariSure PP, 10" Cartridge Filters

Size Pore Size Туре Adapter Elastomer Sterility Pack Size Code Code Code Code Code Code Code ClariSure PP CPPP 5″ 53 0.5 µm 04 7P Silicone Non Sterile 01 A0 SS 1 1 10″ 54 1 µm 05 7P without fin A1 Viton SV 20' 55 28 with fin C0 EPDM SE 1.2 µm 10 30″ 56 PTFE 2 µm 15 BEO B0 ST* FEP 2.5 µm 06 'Ο' D0 Encapsulated ΕV 5 µm 07 Viton 10 µm 08 20 µm 11 30 µm 19 Example: CPPP FV 1 01 55 04 **A0**

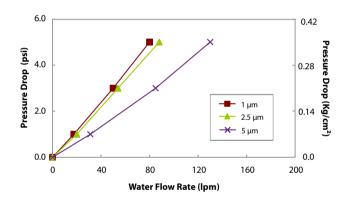
*PTFE (ST) gasket seals are available with Adapter Code B0 only For Adapters and Elastomers availability refer Page 91.

Ordering Information

Complies with USFDA 21 CFR 210.3 (b)(6) Meets and Exceeds USFDA 21 CFR 177.1520

ClariSure PL Standard Cartridge Filters

ClariSure PL cartridge filters are all polypropylene high retention efficiency (99.99%) pleated cartridge filters offering large filtration area.


Complies with USFDA 21 CFR 210.3 (b)(6) Meets and Exceeds USFDA 21 CFR 177.1520

Specifications

Construction								
Pore Size	1 μm, 2.5 μm, 5 μm, 10 μm							
Filter Media		Polypr	opylene					
Support (Drainage) Layers		Polypr	opylene					
Plastic Parts		Polypr	opylene					
Size								
Size	5″	10″	20″	30″				
Effective Filtration Area (Nominal)	2500 cm ²	5000 cm ²	10000 cm²	15000 cm ²				
	Operat	ional						
Max. Operating 80 °C $@\leq$ 30 psi (2 Kg/cm ²) Temperature								
Max. Differential Pressure	50 psi (3.5 Kg/cm²) @ 25 °C							

Water Flow Rates

ClariSure PL, 10" Cartridge Filters

Ordering Information

Туре		Si	ize	Pore	Size	Adapt	er	Elaston	ner	Sterili	ty	Pack	c Size
	Code		Code		Code		Code		Code		Code		Code
ClariSure PL	CPPL	5″	53	1 µm	05	7P	A0	Silicone	SS	Non Sterile	1	1	01
		10″	54	2.5 μm	06	7P without fin	A1	Viton	SV				
		20″	55	5 µm	07	28 with fin	C0	EPDM	SE				
		30″	56	10 µm	08	BEO	BO	PTFE	ST*				
						'O'	D0	FEP Encapsulated Viton	FV				

Example:

CPPL	54	07	ВО	SV	1	01

*PTFE (ST) gasket seals are available with Adapter Code B0 only For Adapters and Elastomers availability refer Page 91.

ClariSure DP Standard Cartridge Filters

ClariSure DP cartridge filters are specially designed medium retention efficiency, multilayered, all polypropylene depth cartridge filters offering high dirt holding capacity as well as high flow rates due to their pleated configuration.

These filters are primarily used as pre-filters but can also be used as terminal filters for non-critical applications.

Specifications

	Constru	ction							
Pore Size	1 μm, 1.	5 μm, 3 μm, 30 μm,		n, 20 µm					
Filter Media	Polypropylene								
Support (Drainage) Layers		Polypro	pylene						
Plastic Parts	Polypropylene								
	Size								
Size	5″	10″	20″	30″					
Effective Filtration Area (Nominal)	2000 cm ²	4000 cm ²	8000 cm ²	12000 cm ²					
	Operati	onal							
Max. Operating Temperature	80 °C @ <u><</u> 30 psi (2 Kg/cm²)								
Max. Differential Pressure	5	0 psi (3.5 Kg	/cm²) @ 25 °	°C					

Complies with USFDA 21 CFR 210.3 (b)(6)

Meets and Exceeds USFDA 21 CFR 177.1520

Ordering Information

Туре	e	Si	ize	Pore	Size	Adapt	er	Elaston	ner	Sterili	ty	Pack	c Size
	Code		Code		Code		Code		Code		Code		Code
ClariSure DP	CPDP	5″	53	1 µm	05	7P	A0	Silicone	SS	Non Sterile	1	1	01
		10″	54	1.5 µm	14	7P without fin	A1	Viton	SV				
		20″	55	3 µm	16	28 with fin	C0	EPDM	SE				
		30″	56	5 µm	07	BEO	BO	PTFE	ST*				
				10 µm	08	'O'	D0	FEP					
				20 µm	11			Encapsulated Viton	FV				
				30 µm	19			intoin					
				40 µm	20								
Example:													
CPD	P	5	6	1	4	A0		SS		1		0	1

*PTFE (ST) gasket seals are available with Adapter Code B0 only

Chemical Compatibility

Table below shows the chemical compatibility of various process filtration products with some commonly used solvents. All products were exposed to specified chemicals for 72 hours at 25 °C. Chemical compatibility data with specific reagents is available on request.

Reagents			<i>eptiSui</i> idge Fi				C	<i>Cl</i> Cartri	<i>ariSu</i> dge I		s		'O' I	Rings/0	Gask	cet Seals
	HS/KS	HSR	WS	NS	TH/TF	GK	GS	GP	PA	PP	PL	DP	Silicone	Viton	EP	FEP Encapsulated Viton
Solvents																
Acetone	Ν	Ν	G	G	G	Ν	G	G	G	G	G	G	Ν	Ν	G	G
Acetonitrile	G	G	G	G	G	G	G	G	G	G	G	G	G	Ν	G	G
Benzene	G	G	Ν	G	G	F	F	F	F	F	F	F	N	G	Ν	G
Benzyl Alcohol	Ν	Ν	Ν	G	G	N	G	G	G	G	G	G	G	G	G	G
Benzyl Alcohol 2%	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Diethyl Ether	G	G	G	G	G	N	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	G
Dimethylformamide	Ν	Ν	G	G	G	N	G	G	G	G	G	G	G	Ν	Ν	G
Ethanol	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Ethyl Acetate	G	G	G	G	G	G	G	G	G	G	G	G	N	Ν	G	G
Ethylene Glycol	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Hexane	F	F	Ν	F	F	F	F	F	F	F	F	F	N	G	Ν	G
Iso Propyl Alcohol	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Methanol	G	G	G	G	G	G	G	G	G	G	G	G	G	Ν	G	G
Methylene Chloride	N	Ν	Ν	Ν	N	N	Ν	Ν	Ν	Ν	Ν	Ν	N	N	Ν	G
n-Butanol	G	G	G	G	G	G	G	G	G	G	G	G	N	G	G	G
Peanut oil	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Tetrahydrafuran/Water (50:50)	N	N	Ν	Ν	G	N	Ν	Ν	Ν	Ν	Ν	Ν	N	N	Ν	G
Toluene	G	G	N	G	G	G	G	G	G	G	G	G	N	G	Ν	G
Trichloroethylene	N	N	Ν	Ν	N	N	Ν	Ν	Ν	Ν	Ν	Ν	N	G	Ν	G
Acids																
Hydrochloric Acid 37%	G	G	G	Ν	G	G	G	G	G	G	G	G	Ν	G	Ν	G
Hydrofluoric Acid 10%	G	G	NT	F	G	N	Ν	Ν	G	G	G	G	N	G	F	G
Nitric Acid 67%	Ν	Ν	Ν	Ν	G	N	G	G	G	G	G	G	N	G	Ν	G
Nitric Acid 7%	G	G	G	Ν	G	G	G	G	G	G	G	G	G	G	G	G
Sulphuric Acid 10%	G	G	G	F	G	G	G	G	G	G	G	G	G	G	G	G
Bases																
Ammonium Hydroxide 25%	Ν	G	Ν	Ν	G	N	Ν	G	G	G	G	G	G	G	G	G
Sodium Hydroxide 32%	Ν	G	Ν	Ν	G	N	Ν	G	G	G	G	G	G	G	G	G
Potassium Hydroxide 32%	N	G	N	Ν	G	N	Ν	G	G	G	G	G	G	G	G	G

G: Good F: Fair N: Not recommended NT : Not Tested

Chemical Compatibility

Table below shows the chemical compatibility of various process filtration products with some commonly used solvents. All products were exposed to specified chemicals for 72 hours at 25 °C. Chemical compatibility data with specific reagents is available on request.

Reagents		Asept Capsule		s	<i>AseptiVent</i> Capsule Filters		ClariCa sule Fil		Membrane Disc Filters	Microglassfiber Pre-filter Discs
	KL/ KS	KO/ KSO	NL/ NS	WS	TF	GK	GS	PP	NN	GF
Solvents										
Acetone	N	Ν	G	G	G	Ν	G	G	G	G
Acetonitrile	G	G	G	G	G	G	G	G	G	G
Benzene	G	G	G	Ν	G	F	F	F	G	G
Benzyl Alcohol	N	Ν	G	Ν	G	Ν	G	G	G	G
Benzyl Alcohol 2%	G	G	G	G	G	G	G	G	G	G
Diethyl Ether	G	G	G	G	G	Ν	Ν	Ν	G	G
Dimethylformamide	N	Ν	G	G	G	Ν	G	G	G	G
Ethanol	G	G	G	G	G	G	G	G	G	G
Ethyl Acetate	G	G	G	G	G	G	G	G	G	G
Ethylene Glycol	G	G	G	G	G	G	G	G	G	G
Hexane	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	G
Iso Propyl Alcohol	G	G	G	G	G	G	G	G	G	G
Methanol	G	G	G	G	G	G	G	G	G	G
Methylene Chloride	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	G
n-Butanol	G	G	G	G	G	G	G	G	G	G
Peanut oil	G	G	G	G	G	G	G	G	G	G
Tetrahydrafuran/Water (50:50)	N	Ν	Ν	Ν	G	Ν	Ν	Ν	G	G
Toluene	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	G
Trichloroethylene	N	Ν	Ν	Ν	N	Ν	Ν	Ν		G
Acids									Ν	
Hydrochloric Acid 37%	G	G	Ν	G	G	G	G	G	G	G
Hydrofluoric Acid 10%	G	G	G	NT	G	Ν	Ν	G	Ν	Ν
Nitric Acid 67%	N	Ν	Ν	Ν	G	Ν	G	G	G	G
Nitric Acid 7%	G	G	G	G	G	G	G	G	G	G
Sulphuric Acid 10%	G	G	G	G	G	G	G	G		G
Bases									G	
Ammonium Hydroxide 25%	N	G	Ν	Ν	G	Ν	G	G	G	G
Sodium Hydroxide 32%	N	G	Ν	Ν	G	Ν	G	G	N	F
Potassium Hydroxide 32%	N	G	N	N	G	N	G	G	N	G

G: Good F: Fair N: Not recommended NT : Not Tested

End Connection Availability Chart for Capsule Filters

Connectio	ons Available		
Inlet/ Outlet	25mm	37mm	50mm
1⁄4″ SHB I/O	х	\checkmark	\checkmark
¾" Sanitary Flange I/O	х	Х	Outlet Only
Female Luer Lock	Inlet Only	Х	Х
Male Luer Slip	Outlet Only	Х	х
1/8" Hose Barb I/O	\checkmark	Х	х

	S	mall Ca	psule Filter	S
End Connections	1″	2″	5″	8″
½″ Hose Barb	\checkmark	\checkmark	\checkmark	\checkmark
Single Step ½″ Hose Barb	х	\checkmark	\checkmark	\checkmark
¼" Stepped Hose Barb		V	\checkmark	\checkmark
1½" Sanitary Flange		\checkmark	V	\checkmark
³ ⁄4" Sanitary Flange		\checkmark	\checkmark	\checkmark
1⁄2″ MNPT	Х	\checkmark	\checkmark	\checkmark
¼″ MNPT		\checkmark	V	\checkmark
Quick Connector		\checkmark	\checkmark	\checkmark
Female Luer Lock	\checkmark	\checkmark	\checkmark	\checkmark
Male Luer Slip	Outlet Only	Х	Х	Х
¾6″ Hose Barb	\checkmark	\checkmark	Outlet Only	Х
¾" Hose Barb	Х	\checkmark	\checkmark	\checkmark

Bell is available with ¼" SHB outlet in 1" Capsule Filters only Bell is available with ½" Hose Barb outlet in 1", 2", 5" and 8" Capsule Filters

		Large Capsule Filters									
		Inline T-line									
End Connections	5" 10" 20" 30" 10" 20"										
Single Step ½" Hose Barb	\checkmark	V	V		х	х	х				
1½" Sanitary Flange	\checkmark	V	\checkmark		\checkmark		\checkmark				
¾" Sanitary Flange	\checkmark	\checkmark	х	х	х	х	х				
³‰" Hose Barb	\checkmark	V	V	\checkmark	х	х	Х				
1″ Hose Barb	х	\checkmark	\checkmark	\checkmark	х	х	Х				

Dimensions: Capsule Filters

	Inlir	ne Capsule Fi	lters
Inlet/ Outlet	25mm	37mm	50mm
¼" - ¾" Stepped Hose Barb I/O	-	64 mm	79 mm
¼" Single Step Hose Barb I/O	38 mm	-	-
¾" Sanitary Flange I/O	-	-	51 mm
Female Luer Lock Inlet/ Male Luer Slip Outlet	23 mm	-	-
1/8" Hose Barb I/O	36 mm	-	-
Operational Radius	15 mm	23 mm	28 mm

		Small Caps	ule Filters	
End Connections	1″	2″	5″	8″
¼″ SHB I/O	94 mm	122 mm	172 mm	223 mm
³ 4" Sanitary Flange Inlet I/O	85 mm	104 mm	155 mm	206 mm
Quick Connector	100 mm	113 mm	164 mm	218 mm
1½" Sanitary Flange I/O	92 mm	112 mm	164 mm	216 mm
1/2" Hose Barb I/O	90 mm	112 mm	162 mm	214 mm
1/2" Single Step Hose Barb I/O	-	115 mm	165 mm	218 mm
1½" Sanitary Flange Inlet ½" Single Step Hose Barb Outlet	-	112 mm	165 mm	216 mm
¾" Hose Barb I/O	-	115 mm	167 mm	217 mm
Operational Radius	40 mm	65 mm	65 mm	65 mm

	I	nline Cap	osule Filt	ers	T-line Capsule Filters				
End Connections	5″	10″	20″	30″	10″	20″	30″		
1½" Sanitary Flange I/O	205 mm	330 mm	600 mm	855 mm	340 mm	580 mm	840 mm		
¾" Sanitary Flange I/O	214 mm	335 mm	х	х	х	х	х		
1/2" Single Step Hose Barb I/O	218 mm	336 mm	630 mm	890 mm	х	х	х		
1½" Sanitary Flange Inlet ½" Hose Barb Outlet	212 mm	334 mm	620 mm	870 mm	x	х	x		
¾″ Hose Barb I/O	211 mm	332 mm	634 mm	885 mm	х	х	х		
1" Hose Barb I/O	х	405 mm	635 mm	895 mm	х	х	х		
Operational Radius	80 mm	80 mm	80 mm	80 mm	80 mm	80 mm	80 mm		

Adapter and Elastomers Availability Chart for Cartridge Filters

Mini Cartridge Filters					
Adapters	2.5″	5″			
4463	\checkmark	\checkmark			
4463B	\checkmark	\checkmark			
4440	\checkmark	\checkmark			
Seal-K	\checkmark	\checkmark			
Seal-O	Х	\checkmark			
Seal-M	\checkmark	\checkmark			

Mini Cartridge Filters			
Adapters	Elastomer		
	Silicone		
4463	\checkmark		
4463B	\checkmark		
4440	\checkmark		
Seal-K	х		
Seal-O	\checkmark		
Seal-M	\checkmark		

Standard Cartridge Filters						
Adapters	5″	10″	20″	30″		
7P	\checkmark	\checkmark	\checkmark	\checkmark		
7P without Fin	\checkmark	\checkmark	\checkmark	\checkmark		
28 with Fin	Х	\checkmark		\checkmark		
ʻOʻ	Х	\checkmark	\checkmark	\checkmark		

Standard Cartridge Filters						
Adapters	Elastomers					
	Silicone	Viton	EPDM	FEP Encapsulated Viton		
7P	\checkmark	\checkmark	\checkmark	\checkmark		
7P without Fin	\checkmark	\checkmark	\checkmark	\checkmark		
28 with Fin	\checkmark	\checkmark	\checkmark	х		
ʻOʻ	\checkmark	\checkmark	\checkmark	Х		

Ordering Information

Shipment details for customers outside India

Through Federal Express, UPS, or DHL courier (specify complete street address).

By air freight for large quantities (specify airport of discharge).

Goods usually reach destination within 5-10 days from date of shipment.

Membrane products are light weight and air freight charges usually vary between 3% to 10% of the value. Any duties/taxes in the country of destination are the responsibility of the consignee.

Shipment details for customers in India

The consignments can be sent through courier. Courier charges will be borne by the customer. Please specify the preferred courier and provide any form and instructions for octroi etc. that may be required for shipment.

How to order

Orders may be placed by phone/fax/email/mail directly to Sales.

Advanced Microdevices Pvt. Ltd.

20-21, Industrial Area, Ambala Cantt - 133 006, INDIA **Tel:** +91-171-2699290, 2699471 **Email:** info@mdimembrane.com

mdi Quality

Quality Policy

Quality is built into **mdi** products and services by not only adhering to well designed quality systems to consistently produce high quality, internationally acceptable products but also by striving to incorporate superior performance parameters into all our products and services and provide our customers with a unique performance advantage in their application. Our quality policy provides a glimpse of our commitment:

mdi strives to provide to its customers products and services of highest standards possible, consistently superior, and more satisfying than what is available anywhere else."

Stride Towards Excellence

At **mdi**, our mission is to constantly strive to achieve excellence in all our endeavors by establishing systems to create excellent products and services to fulfil the needs of our customers. To achieve this we

- Frequently compare our products with competing brands
- Simulate tests for functional use
- Develop easy-to-use innovative products

We are constantly working on improvements and welcome suggestions from our customers.

Guarantee

All **mdi** products are guaranteed and are backed by our

- Technical expertise and experience of over 45 years
- Validated mdi process' for consistency and repeatability
- Strict quality control and quality assurance regimen
- Certificate of Analysis accompanying all shipments

We have an unconditional replacement policy in case of any defects.

Worldwide Exports

Other Literature Available

mdi Laboratory Filtration Product Guidemdi Biotech Product Guidemdi Diagnostic Product Guide

INDIA Branch Offices

AHMEDABAD Mobile : +91-9328257987

BANGALORE Mobile : +91-9972587761

CHENNAI Mobile : +91-9972587761

HYDERABAD

Mobile : +91-9391935423

MUMBAI

Tel : +91-22-40214436 Fax : +91-22-40214435 Mobile : +91-9820026178

USA Office

Tel : +1-717-412-0943 Fax : +1-717-695-9637

Advanced Microdevices Pvt. Ltd.

20-21, Industrial Area, Ambala Cantt -133006, INDIA Tel : +91-171-2699290, 2699471 E-mail : info@mdimembrane.com Website : www.mdimembrane.com

mdi Membrane Technologies INC.

75 Utley Drive STE 103, Camp Hill, PA 17011 Phone: +1-717-412-0943, Fax: +1-717-695-9637 E-mail: rs@mdimembranetech.com Website: www.mdimembranetech.com